

OpenVPN Cookbook
Second Edition

Discover over 90 practical and exciting recipes that leverage
the power of OpenVPN 2.4 to help you obtain a reliable and
secure VPN

Jan Just Keijser

BIRMINGHAM - MUMBAI

OpenVPN Cookbook

Second Edition

Copyright © 2017 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or
transmitted in any form or by any means, without the prior written permission of the
publisher, except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without
warranty, either express or implied. Neither the author, nor Packt Publishing, and its
dealers and distributors will be held liable for any damages caused or alleged to be caused
directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: February 2011

Second edition: February 2017

Production reference: 1100217

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham
B3 2PB, UK.

ISBN 978-1-78646-312-8

www.packtpub.com

http://www.packtpub.com

Credits

Author

Jan Just Keijser

Copy Editor

Pranjali Chury

Reviewer

Ralf Hildebrandt

Project Coordinator

Izzat Contractor

Commissioning Editor

Pratik Shah

Proofreader

Safis Editing

Acquisition Editor

Rahul Nair

Indexer

Tejal Soni

Content Development Editor

Zeeyan Pinheiro

Production Coordinator

Melwyn D'sa

Technical Editor

Vivek Pala

About the Author
Jan Just Keijser is an open source professional from Utrecht, the Netherlands. He has a
wide range of experience in IT, ranging from providing user support, system
administration, and systems programming to network programming. He has worked for
various IT companies since 1989. He was an active USENET contributor in the early 1990s
and has been working mainly on Unix/Linux platforms since 1995.

Currently, he is employed as a senior scientific programmer in Amsterdam, the
Netherlands, at Nikhef, the institute for subatomic physics from the Dutch Foundation for
Fundamental Research on Matter (FOM). He works on multi-core and many-core
computing systems and grid computing as well as smartcard applications. His open source
interests include all types of virtual private networking, including IPSec, PPTP, and, of
course, OpenVPN. In 2004, he discovered OpenVPN and has been using it ever since.

His first book was OpenVPN 2 Cookbook by Packt Publishing in 2011, followed by Mastering
OpenVPN, also by Packt Publishing, in 2015.

About the Reviewer
Ralf Hildebrandt is an active and well-known figure in the Postfix community. He’s
currently employed at Charite, Europe’s largest university hospital. OpenVPN has
successfully been used at Charite for over 10 years now on a multitude of client operating
systems.

Together with Patrick Koetter, he has written the Book of Postfix.

www.PacktPub.com
For support files and downloads related to your book, please visit www.PacktPub.com.

Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at www.PacktPub.com and as a
print book customer, you are entitled to a discount on the eBook copy. Get in touch with us
at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up for a
range of free newsletters and receive exclusive discounts and offers on Packt books and
eBooks.

h t t p s ://w w w . p a c k t p u b . c o m /m a p t

Get the most in-demand software skills with Mapt. Mapt gives you full access to all Packt
books and video courses, as well as industry-leading tools to help you plan your personal
development and advance your career.

Why subscribe?
Fully searchable across every book published by Packt
Copy and paste, print, and bookmark content
On demand and accessible via a web browser

http://www.PacktPub.com
http://www.PacktPub.com
http://www.PacktPub.com
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt

Customer Feedback
Thanks for purchasing this Packt book. At Packt, quality is at the heart of our editorial
process. To help us improve, please leave us an honest review on this book's Amazon page
at h t t p s ://g o o . g l /A 3V 0N D .

If you'd like to join our team of regular reviewers, you can e-mail us at
customerreviews@packtpub.com. We award our regular reviewers with free eBooks and
videos in exchange for their valuable feedback. Help us be relentless in improving our
products!

https://goo.gl/A3V0ND
https://goo.gl/A3V0ND
https://goo.gl/A3V0ND
https://goo.gl/A3V0ND
https://goo.gl/A3V0ND
https://goo.gl/A3V0ND
https://goo.gl/A3V0ND
https://goo.gl/A3V0ND
https://goo.gl/A3V0ND
https://goo.gl/A3V0ND
https://goo.gl/A3V0ND
https://goo.gl/A3V0ND
https://goo.gl/A3V0ND
https://goo.gl/A3V0ND
https://goo.gl/A3V0ND
https://goo.gl/A3V0ND
https://goo.gl/A3V0ND
https://goo.gl/A3V0ND
https://goo.gl/A3V0ND
https://goo.gl/A3V0ND
https://goo.gl/A3V0ND
https://goo.gl/A3V0ND
https://goo.gl/A3V0ND
https://goo.gl/A3V0ND
https://goo.gl/A3V0ND
https://goo.gl/A3V0ND
https://goo.gl/A3V0ND
https://goo.gl/A3V0ND
https://goo.gl/A3V0ND
https://goo.gl/A3V0ND

Table of Contents
Preface 1

Chapter 1: Point-to-Point Networks 7

Introduction 7
The shortest setup possible 8

Getting ready 8
How to do it… 8
How it works… 10
There's more… 10

Using the TCP protocol 10
Forwarding non-IP traffic over the tunnel 11

OpenVPN secret keys 11
Getting ready 11
How to do it… 11
How it works… 12
There's more… 12
See also 13

Multiple secret keys 13
Getting ready 14
How to do it… 14
How it works… 15
There's more… 16
See also 16

Plaintext tunnel 16
Getting ready 16
How to do it… 16
How it works… 17
There's more… 17

Routing 18
Getting ready 18
How to do it… 19
How it works… 21
There's more… 21

Routing issues 21
Automating the setup 22

See also 22

[ii]

Configuration files versus the command line 22
Getting ready 22
How to do it… 23
How it works… 23
There's more… 24

Exceptions to the rule 24
Complete site-to-site setup 25

Getting ready 25
How to do it… 25
How it works… 27
There's more… 28
See also 28

Three-way routing 28
Getting ready 28
How to do it… 29
How it works… 32
There's more… 32

Scalability 32
Routing protocols 33

See also 33
Using IPv6 33

Getting ready 33
How to do it… 34
How it works… 36
There's more… 37

Log file errors 37
IPv6-only tunnel 37

See also 38

Chapter 2: Client-server IP-only Networks 39

Introduction 39
Setting up the public and private keys 40

Getting ready 40
How to do it… 41
How it works… 45
There's more… 45

Using the easy-rsa scripts on Windows 45
Some notes on the different variables 45

See also 46
A simple configuration 46

Getting ready 46

[iii]

How to do it… 46
How it works… 48
There's more… 48

Server-side routing 49
Getting ready 50
How to do it… 50
How it works… 52
There's more… 53

Linear addresses 54
Using the TCP protocol 54
Server certificates and ns-cert-type server 54
Masquerading 55

Adding IPv6 support 55
Getting ready 56
How to do it… 56
How it works… 57
There's more… 57

IPv6 endpoints 57
IPv6-only setup 57

Using client-config-dir files 58
Getting ready 58
How to do it… 58
How it works… 59
There's more… 60

The default configuration file 60
Troubleshooting 60
Options allowed in a client-config-dir file 60

Routing – subnets on both sides 61
Getting ready 61
How to do it… 62
How it works… 63
There's more… 64

Masquerading 64
Client-to-client subnet routing 64
No route statements in a CCD file 64

See also 65
Redirecting the default gateway 65

Getting ready 65
How to do it… 65
How it works… 66
There's more… 67

Redirect-gateway parameters 67

[iv]

The redirect-private option 68
Split tunneling 68

See also 69
Redirecting the IPv6 default gateway 69

Getting ready 69
How to do it… 70
How it works… 70
There's more… 71

Using an ifconfig-pool block 71
Getting ready 71
How to do it… 72
How it works… 75
There's more.. 76

Configuration files on Windows 76
Client-to-client access 76
Using the TCP protocol 77

Using the status file 77
Getting ready 77
How to do it… 77
How it works… 79
There's more… 79

Status parameters 79
Disconnecting clients 79
Explicit-exit-notify 80

The management interface 80
Getting ready 80
How to do it… 81
How it works… 82
There's more… 82
See Also 83

Proxy ARP 83
Getting ready 83
How to do it… 84
How it works… 85
There's more… 85

TAP-style networks 85
User nobody 85

Broadcast traffic might not always work 86
See also 86

Chapter 3: Client-server Ethernet-style Networks 87

Introduction 87

[v]

Simple configuration – non-bridged 87
Getting ready 88
How to do it… 88
How it works… 90
There's more… 91

Differences between TUN and TAP 91
Using the TCP protocol 91
Making IP forwarding permanent 92

See also 92
Enabling client-to-client traffic 92

Getting ready 93
How to do it… 93
How it works… 96
There's more… 97

Broadcast traffic may affect scalability 97
Filtering traffic 97
TUN-style networks 97

Bridging – Linux 98
Getting ready 98
How to do it… 98
How it works… 101
There's more… 101

Fixed addresses and the default gateway 101
Name resolution 102

See also 102
Bridging- Windows 102

Getting ready 102
How to do it… 103
How it works… 106
See also 106

Checking broadcast and non-IP traffic 106
Getting ready 107
How to do it… 107
How it works… 110

An external DHCP server 110
Getting ready 111
How to do it… 111
How it works… 113
There's more… 113

DHCP server configuration 113
DHCP relay 114

[vi]

Tweaking /etc/sysconfig/network-scripts 114
Using the status file 115

Getting ready 115
How to do it… 115
How it works… 117
There's more… 117

Difference with TUN-style networks 117
Disconnecting clients 118

See also 118
The management interface 118

Getting ready 118
How to do it… 119
How it works… 121
There's more… 122
See also 122

Integrating IPv6 into TAP-style networks 122
Getting ready 123
How to do it… 123
How it works… 124
There's more… 125
See also 125

Chapter 4: PKI, Certificates, and OpenSSL 126

Introduction 126
Certificate generation 127

Getting ready 127
How to do it… 127
How it works… 128
There's more… 128
See also 129

OpenSSL tricks – x509, pkcs12, verify output 129
Getting ready 129
How to do it… 129
How it works… 130

Revoking certificates 131
Getting ready 131
How to do it… 131
How it works… 132
There's more… 132

What is needed to revoke a certificate 132

[vii]

See also 132
The use of CRLs 133

Getting ready 133
How to do it… 133
How it works… 134
There's more… 134
See also 135

Checking expired/revoked certificates 135
Getting ready 135
How to do it… 135
How it works… 136
There's more… 137

Intermediary CAs 137
Getting ready 137
How to do it… 137
How it works… 139
There's more… 139

Multiple CAs – stacking, using the capath directive 139
Getting ready 139
How to do it… 139
How it works… 141
There's more… 141

Using the –capath directive 142
Determining the crypto library to be used 142

Getting ready 143
How to do it… 143
How it works… 144
There's more… 144
See also 144

Crypto features of OpenSSL and PolarSSL 145
Getting ready 145
How to do it… 145
How it works… 147
There's more… 147

AEAD Ciphers 147
Encryption speed 147

Pushing ciphers 148
Getting ready 148
How to do it… 148
How it works… 149

[viii]

There's more… 149
Future enhancements 150

Elliptic curve support 150
Getting ready 151
How to do it… 151
How it works… 153
There's more… 153

Elliptic curve support 154

Chapter 5: Scripting and Plugins 155

Introduction 155
Using a client-side up/down script 156

Getting ready 156
How to do it… 156
How it works… 158
There's more… 158

Environment variables 159
Calling the down script before the connection terminates 159
Advanced – verify the remote hostname 159

Using a client-connect script 160
Getting ready 160
How to do it… 160
How it works… 162
There's more… 162

Pitfall in using ifconfig-push 162
The client-disconnect scripts 162
Environment variables 163
Absolute paths 163

Using a learn-address script 163
Getting ready 164
How to do it… 164
How it works… 166
There's more… 166

User nobody 167
The update action 167

Using a tls-verify script 167
Getting ready 168
How to do it… 168
How it works… 170
There's more… 170

Using an auth-user-pass-verify script 171
Getting ready 171

[ix]

How to do it… 171
How it works… 173
There's more… 173

Specifying the username and password in a file on the client 174
Passing the password via environment variables 174

Script order 174
Getting ready 175
How to do it… 175
How it works… 176
There's more… 177

Script security and logging 177
Getting ready 177
How to do it… 178
How it works… 180
There's more… 180

Scripting and IPv6 180
Getting ready 181
How to do it… 181
How it works… 183
There's more… 183

Using the down-root plugin 183
Getting ready 183
How to do it… 184
How it works… 185
There's more… 186
See also 186

Using the PAM authentication plugin 187
Getting ready 187
How to do it… 187
How it works… 189
There's more… 190
See also 190

Chapter 6: Troubleshooting OpenVPN - Configurations 191

Introduction 191
Cipher mismatches 192

Getting ready 192
How to do it… 192
How it works… 193
There's more… 193

[x]

Pushable ciphers 194
TUN versus TAP mismatches 194

Getting ready 194
How to do it… 194
How it works… 195

Compression mismatches 196
Getting ready 196
How to do it… 196
How it works… 197

Key mismatches 197
Getting ready 197
How to do it… 198
How it works… 198
See also 199

Troubleshooting MTU and tun-mtu issues 199
Getting ready 200
How to do it… 200
How it works… 201
There's more… 201
See also 201

Troubleshooting network connectivity 202
Getting ready 202
How to do it… 202
How it works… 203
There's more… 203

Troubleshooting client-config-dir issues 204
Getting ready 204
How to do it… 204
How it works… 205
There's more… 206

More verbose logging 206
Other frequent client-config-dir mistakes 206

See also 206
Troubleshooting multiple remote issues 207

Getting ready 207
How to do it… 207
How it works… 208
There's more… 208
See also 209

Troubleshooting bridging issues 209

[xi]

Getting ready 209
How to do it… 209
How it works… 211
See also 212

How to read the OpenVPN log files 212
Getting ready 212
How to do it… 212
How it works… 213
There's more… 217

Chapter 7: Troubleshooting OpenVPN - Routing 218

Introduction 218
The missing return route 218

Getting ready 219
How to do it… 219
How it works… 221
There's more… 221

Masquerading 222
Adding routes on the LAN hosts 222

See also 222
Missing return routes when iroute is used 222

Getting ready 223
How to do it… 223
How it works… 225
There's more… 225
See also 226

All clients function except the OpenVPN endpoints 226
Getting ready 226
How to do it… 227
How it works… 228
There's more… 228
See also 229

Source routing 229
Getting ready 229
How to do it… 230
How it works… 231
There's more… 232

Routing and permissions on Windows 232
Getting ready 232
How to do it… 233

[xii]

How it works… 234
There's more… 235

Unable to change Windows network location 235
Getting ready 235
How to do it… 236
How it works… 238
There's more… 238

Troubleshooting client-to-client traffic routing 239
Getting ready 239
How to do it… 240
How it works… 241
There's more… 241
See also 242

Understanding the MULTI: bad source warnings 242
Getting ready 243
How to do it… 243
How it works… 244
There's more… 244

Other occurrences of the MULTI: bad source message 244
See also 244

Failure when redirecting the default gateway 245
Getting ready 245
How to do it… 246
How it works… 248
There's more… 249
See also 249

Chapter 8: Performance Tuning 250

Introduction 250
Optimizing performance using ping 251

Getting ready 251
How to do it… 251
How it works… 252
There's more… 253
See also 253

Optimizing performance using iperf 253
Getting ready 254
How to do it… 254
How it works… 255
There's more… 255

[xiii]

Client versus server iperf results 256
Network latency 256
Gigabit networks 256

See also 256
Comparing IPv4 and IPv6 speed 256

Getting ready 257
How to do it… 257
How it works… 258
There's more… 258

Client versus server iperf results 258
OpenSSL cipher speed 259

Getting ready 259
How to do it… 259
How it works… 261
There's more… 261
See also 261

OpenVPN in Gigabit networks 262
Getting ready 262
How to do it… 263
How it works… 264
There's more… 265

Plain-text tunnel 265
Windows performance 265

Compression tests 265
Getting ready 266
How to do it… 266
How it works… 268
There's more… 268

Traffic shaping 269
Getting ready 269
How to do it… 269
How it works… 271

Tuning UDP-based connections 271
Getting ready 271
How to do it… 272
How it works… 273
There's more… 274
See also 274

Tuning TCP-based connections 274
Getting ready 275

[xiv]

How to do it… 275
How it works… 277
There's more… 278

Analyzing performance using tcpdump 278
Getting ready 278
How to do it… 279
How it works… 280
See also 280

Chapter 9: OS Integration 282

Introduction 282
Linux – using NetworkManager 282

Getting ready 283
How to do it… 283
How it works… 286
There's more… 286

Setting up routes using NetworkManager 287
DNS settings 288
Scripting 288

Linux – using pull-resolv-conf 288
Getting ready 289
How to do it… 289
How it works… 290
There's more… 290

Windows – elevated privileges 291
Getting ready 291
How to do it… 291
How it works… 293

Windows – using the CryptoAPI store 293
Getting ready 294
How to do it… 294
How it works… 297
There's more… 297

The CA certificate file 297
Certificate fingerprint 297

Windows – updating the DNS cache 297
Getting ready 298
How to do it… 298
How it works… 299
See also 300

Windows – running OpenVPN as a service 300

[xv]

Getting ready 300
How to do it… 300
How it works… 303
There's more… 303

Automatic service startup 304
OpenVPN user name 305

See also 305
Windows – public versus private network adapters 306

Getting ready 306
How to do it… 306
How it works… 307
See also 308

Windows – routing methods 308
Getting ready 308
How to do it… 308
How it works… 310
There's more… 310

Windows 8+ – ensuring DNS lookups are secure 310
Getting ready 311
How to do it… 311
How it works… 312
There's more… 312

Android – using the OpenVPN for Android clients 313
Getting ready 313
How to do it… 313
How it works… 315
There's more… 315
See also 316

Push-peer-info – pushing options to Android clients 316
Getting ready 316
How to do it… 316
How it works… 317
There's more… 318

Chapter 10: Advanced Configuration 319

Introduction 319
Including configuration files in config files 319

Getting ready 320
How to do it… 320
How it works… 322

[xvi]

Multiple remotes and remote-random 322
Getting ready 322
How to do it… 323
How it works… 324
There's more… 325

Mixing TCP and UDP-based setups 325
Advantage of using TCP-based connections 325
Automatically reverting to the first OpenVPN server 325

See also 326
Inline certificates 326

Getting ready 326
How to do it… 326
How it works… 328
There's more… 328

Connection blocks 328
Getting ready 328
How to do it… 329
How it works… 330
There's more… 331

Allowed directives inside connection blocks 331
Pitfalls when mixing TCP and UDP-based setups 331

See also 332
Details of ifconfig-pool-persist 332

Getting ready 332
How to do it… 333
How it works… 334
There's more… 335

Specifying the update interval 335
Caveat – the duplicate-cn option 335
When topology net30 is used 336

Connecting using a SOCKS proxy 336
Getting ready 336
How to do it… 337
How it works… 339
There's more… 339

Performance 339
SOCKS proxies via SSH 339
SOCKS proxies using plain-text authentication 339

See also 340
Connecting via an HTTP proxy 340

Getting ready 340

[xvii]

How to do it… 341
How it works… 342
There's more… 342

http-proxy options 343
Dodging firewalls 343
Performance 343
Using the OpenVPN GUI 344

See also 344
Connecting via an HTTP proxy with authentication 344

Getting ready 345
How to do it… 345
How it works… 347
There's more… 347

NTLM proxy authorization 348
Authentication methods 348
OpenVPN GUI limitations 348

See also 348
IP-less setups – ifconfig-noexec 348

Getting ready 349
How to do it… 349
How it works… 351
There's more… 352

Point-to-point and TUN-style networks 352
Routing and firewalling 352

Port sharing with an HTTPS server 353
Getting ready 353
How to do it… 354
How it works… 354
There's more… 355

Alternatives 355
Routing features – redirect-private, allow-pull-fqdn 355

Getting ready 355
How to do it… 356
How it works… 357
There's more… 357

The route-nopull directive 358
The max-routes directive 358

See also 358
Filtering out pushed options 358

Getting ready 358
How to do it… 359

[xviii]

How it works… 360
Handing out the public IPs 361

Getting ready 361
How to do it… 361
How it works… 363
There's more… 364
See also 364

Index 365

Preface
OpenVPN is one of the world's most popular packages for setting up a Virtual Private
Network (VPN). OpenVPN provides an extensible VPN framework that has been designed
to ease site-specific customization, such as providing the capability to distribute a
customized installation package to clients or supporting alternative authentication methods
via OpenVPN's plugin module interface. It is widely used by many individuals and
companies, and some service providers even offer OpenVPN access as a service to users in
remote, unsecured environments.

This book provides you with many different recipes for setting up, monitoring, and
troubleshooting an OpenVPN network. The author's experience in troubleshooting
OpenVPN and networking configurations enables him to share his insights and solutions to
help you get the most out of your OpenVPN setup.

What this book covers
Chapter 1, Point-to-Point Networks, gives an introduction to configuring OpenVPN. The
recipes are based on a point-to-point-style network, meaning that only a single client can
connect at a time.

Chapter 2, Client-Server IP-Only Networks, introduces the reader to the most commonly-
used deployment model for OpenVPN: a single server with multiple remote clients capable
of routing IP traffic. This chapter provides the foundation for many of the recipes found in
the other chapters.

Chapter 3, Client-Server Ethernet-Style Networks, covers another popular deployment model
for OpenVPN: a single server with multiple clients, capable of routing Ethernet traffic. This
includes non-IP traffic as well as bridging. You will also learn about the use of an external
DHCP server and the use of the OpenVPN status file.

Chapter 4, PKI, Certificates, and OpenSSL, introduces you to the public key infrastructure
(PKI) and X.509 certificates, which are used in OpenVPN. You will learn how to generate,
manage, manipulate, and view certificates, and you will also learn about the interactions
between OpenVPN and the OpenSSL libraries that it depends upon.

Preface

[2]

Chapter 5, Scripting and Plugins, covers the powerful scripting and plugin capabilities that
OpenVPN offers. You will learn to use client-side scripting, which can be used to tail the
connection process to the site-specific needs. You will also learn about server-side scripting
and the use of OpenVPN plugins.

Chapter 6, Troubleshooting OpenVPN - Configurations, is all about troubleshooting OpenVPN
misconfigurations. Some of the configuration directives used in this chapter have not been
demonstrated before, so even if your setup is functioning properly, this chapter will still be
insightful.

Chapter 7, Troubleshooting OpenVPN - Routing, gives an insight into troubleshooting routing
problems when setting up a VPN using OpenVPN. You will learn how to detect, diagnose,
and repair common routing issues.

Chapter 8, Performance Tuning, explains how you can optimize the performance of your
OpenVPN setup. You will learn how to diagnose performance issues and how to tune
OpenVPN's settings to speed up your VPN.

Chapter 9, OS Integration, covers the intricacies of integrating OpenVPN with the operating
system it is run on. You will learn how to use OpenVPN on the most commonly used client
operating systems: Linux, Mac OS X, and Windows.

Chapter 10, Advanced Configuration, goes deeper into the configuration options that
OpenVPN has to offer. The recipes will cover both advanced server configurations, such as
the use of a dynamic DNS, as well as the advanced client configuration, such as using a
proxy server to connect to an OpenVPN server.

What you need for this book
In order to get the most from this book, there are some expectations of prior knowledge and
experience. It is assumed that the reader has a fair understanding of the system
administration as well as knowledge of TCP/IP networking. Some knowledge on installing
OpenVPN is required as well, for which you can refer to the book Beginning OpenVPN 2.0.9.

Who this book is for
This book is for system administrators who have basic knowledge of OpenVPN and are
eagerly waiting to build, secure, and manage VPNs using the latest version. This book
assumes some prior knowledge of TCP/IP networking and OpenVPN. And to get the most
out of this book, you must have network administration skills.

Preface

[3]

Conventions
In this book, you will find a number of styles of text that distinguish between different
kinds of information. Here are some examples of these styles, and an explanation of their
meaning.

Code words in text are shown as follows: "Copy over the tls-auth secret key file from the
/etc/openvpn/cookbook/keys directory."

A block of code is set as follows:

user nobody
group nobody
persist-tun
persist-key
keepalive 10 60
ping-timer-rem

When we wish to draw your attention to a particular part of a code block, the relevant lines
or items are set in bold:

secret secret.key 1
ifconfig 10.200.0.2 10.200.0.1
route 172.31.32.0 255.255.255.0

tun-ipv6
ifconfig-ipv6 2001:db8:100::2 2001:db8:100::1

Any command-line input or output is written as follows:

[root@server]# openvpn --genkey --secret secret.key

New terms and important words are shown in bold. Words that you see on the screen, in
menus or dialog boxes for example, appear in the text like this: "Go to the Network and
Sharing Center and observe that the TAP adapter is in the section Public Network and that
it is not possible to change this."

Warnings or important notes appear in a box like this.

Preface

[4]

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about this
book—what you liked or disliked. Reader feedback is important for us as it helps us
develop titles that you will really get the most out of.

To send us general feedback, simply e-mail feedback@packtpub.com, and mention the
book's title in the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing or
contributing to a book, see our author guide at www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to help you
to get the most from your purchase.

Downloading the example code
You can download the example code files for this book from your account at h t t p ://w w w . p

a c k t p u b . c o m . If you purchased this book elsewhere, you can visit h t t p ://w w w . p a c k t p u b . c

o m /s u p p o r t and register to have the files e-mailed directly to you.

You can download the code files by following these steps:

Log in or register to our website using your e-mail address and password.1.
Hover the mouse pointer on the SUPPORT tab at the top.2.
Click on Code Downloads & Errata.3.
Enter the name of the book in the Search box.4.
Select the book for which you're looking to download the code files.5.
Choose from the drop-down menu where you purchased this book from.6.
Click on Code Download.7.

mailto:feedback@packtpub.com
https://www.packtpub.com/books/info/packt/authors
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support

Preface

[5]

You can also download the code files by clicking on the Code Files button on the book's
webpage at the Packt Publishing website. This page can be accessed by entering the book's
name in the Search box. Please note that you need to be logged in to your Packt account.

Once the file is downloaded, please make sure that you unzip or extract the folder using the
latest version of:

WinRAR / 7-Zip for Windows
Zipeg / iZip / UnRarX for Mac
7-Zip / PeaZip for Linux

The code bundle for the book is also hosted on GitHub at h t t p s ://g i t h u b . c o m /P a c k t P u b l

i s h i n g /o p e n v p n c o o k b o o k . We also have other code bundles from our rich catalog of books
and videos available at h t t p s ://g i t h u b . c o m /P a c k t P u b l i s h i n g /. Check them out!

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes do
happen. If you find a mistake in one of our books—maybe a mistake in the text or the
code—we would be grateful if you could report this to us. By doing so, you can save other
readers from frustration and help us improve subsequent versions of this book. If you find
any errata, please report them by visiting h t t p ://w w w . p a c k t p u b . c o m /s u b m i t - e r r a t a ,
selecting your book, clicking on the Errata Submission Form link, and entering the details of
your errata. Once your errata are verified, your submission will be accepted and the errata
will be uploaded to our website or added to any list of existing errata under the Errata
section of that title.

To view the previously submitted errata, go to h t t p s ://w w w . p a c k t p u b . c o m /b o o k s /c o n t e n

t /s u p p o r t and enter the name of the book in the search field. The required information will
appear under the Errata section.

https://github.com/PacktPublishing/openvpncookbook
https://github.com/PacktPublishing/openvpncookbook
https://github.com/PacktPublishing/openvpncookbook
https://github.com/PacktPublishing/openvpncookbook
https://github.com/PacktPublishing/openvpncookbook
https://github.com/PacktPublishing/openvpncookbook
https://github.com/PacktPublishing/openvpncookbook
https://github.com/PacktPublishing/openvpncookbook
https://github.com/PacktPublishing/openvpncookbook
https://github.com/PacktPublishing/openvpncookbook
https://github.com/PacktPublishing/openvpncookbook
https://github.com/PacktPublishing/openvpncookbook
https://github.com/PacktPublishing/openvpncookbook
https://github.com/PacktPublishing/openvpncookbook
https://github.com/PacktPublishing/openvpncookbook
https://github.com/PacktPublishing/openvpncookbook
https://github.com/PacktPublishing/openvpncookbook
https://github.com/PacktPublishing/openvpncookbook
https://github.com/PacktPublishing/openvpncookbook
https://github.com/PacktPublishing/openvpncookbook
https://github.com/PacktPublishing/openvpncookbook
https://github.com/PacktPublishing/openvpncookbook
https://github.com/PacktPublishing/openvpncookbook
https://github.com/PacktPublishing/openvpncookbook
https://github.com/PacktPublishing/openvpncookbook
https://github.com/PacktPublishing/openvpncookbook
https://github.com/PacktPublishing/openvpncookbook
https://github.com/PacktPublishing/openvpncookbook
https://github.com/PacktPublishing/openvpncookbook
https://github.com/PacktPublishing/openvpncookbook
https://github.com/PacktPublishing/openvpncookbook
https://github.com/PacktPublishing/openvpncookbook
https://github.com/PacktPublishing/openvpncookbook
https://github.com/PacktPublishing/openvpncookbook
https://github.com/PacktPublishing/openvpncookbook
https://github.com/PacktPublishing/openvpncookbook
https://github.com/PacktPublishing/openvpncookbook
https://github.com/PacktPublishing/openvpncookbook
https://github.com/PacktPublishing/openvpncookbook
https://github.com/PacktPublishing/openvpncookbook
https://github.com/PacktPublishing/openvpncookbook
https://github.com/PacktPublishing/openvpncookbook
https://github.com/PacktPublishing/openvpncookbook
https://github.com/PacktPublishing/openvpncookbook
https://github.com/PacktPublishing/openvpncookbook
https://github.com/PacktPublishing/openvpncookbook
https://github.com/PacktPublishing/openvpncookbook
https://github.com/PacktPublishing/openvpncookbook
https://github.com/PacktPublishing/openvpncookbook
https://github.com/PacktPublishing/openvpncookbook
https://github.com/PacktPublishing/openvpncookbook
https://github.com/PacktPublishing/openvpncookbook
https://github.com/PacktPublishing/openvpncookbook
https://github.com/PacktPublishing/openvpncookbook
https://github.com/PacktPublishing/openvpncookbook
https://github.com/PacktPublishing/openvpncookbook
https://github.com/PacktPublishing/openvpncookbook
https://github.com/PacktPublishing/openvpncookbook
https://github.com/PacktPublishing/openvpncookbook
https://github.com/PacktPublishing/openvpncookbook
https://github.com/PacktPublishing/openvpncookbook
https://github.com/PacktPublishing/openvpncookbook
https://github.com/PacktPublishing/openvpncookbook
https://github.com/PacktPublishing/openvpncookbook
https://github.com/PacktPublishing/openvpncookbook
https://github.com/PacktPublishing/openvpncookbook
https://github.com/PacktPublishing/openvpncookbook
https://github.com/PacktPublishing/openvpncookbook
https://github.com/PacktPublishing/openvpncookbook
https://github.com/PacktPublishing/openvpncookbook
https://github.com/PacktPublishing/openvpncookbook
https://github.com/PacktPublishing/openvpncookbook
https://github.com/PacktPublishing/openvpncookbook
https://github.com/PacktPublishing/openvpncookbook
https://github.com/PacktPublishing/openvpncookbook
https://github.com/PacktPublishing/openvpncookbook
https://github.com/PacktPublishing/openvpncookbook
https://github.com/PacktPublishing/openvpncookbook
https://github.com/PacktPublishing/openvpncookbook
https://github.com/PacktPublishing/openvpncookbook
https://github.com/PacktPublishing/openvpncookbook
https://github.com/PacktPublishing/openvpncookbook
https://github.com/PacktPublishing/openvpncookbook
https://github.com/PacktPublishing/openvpncookbook
https://github.com/PacktPublishing/openvpncookbook
https://github.com/PacktPublishing/openvpncookbook
https://github.com/PacktPublishing/openvpncookbook
https://github.com/PacktPublishing/openvpncookbook
https://github.com/PacktPublishing/openvpncookbook
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support

Preface

[6]

Piracy
Piracy of copyrighted material on the Internet is an ongoing problem across all media. At
Packt, we take the protection of our copyright and licenses very seriously. If you come
across any illegal copies of our works in any form on the Internet, please provide us with
the location address or website name immediately so that we can pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected pirated material.

We appreciate your help in protecting our authors and our ability to bring you valuable
content.

Questions
If you have a problem with any aspect of this book, you can contact us at
questions@packtpub.com, and we will do our best to address the problem.

mailto:copyright@packtpub.com
mailto:questions@packtpub.com

1
Point-to-Point Networks

In this chapter, we will cover the following:

The shortest setup possible
OpenVPN secret keys
Multiple secret keys
Plaintext tunnel
Routing
Configuration files versus the command line
IP-less configurations
Complete site-to-site setup
Three-way routing
Using IPv6

Introduction
The recipes in this chapter will provide an introduction to configuring OpenVPN. They are
based on a point-to-point type of network, meaning that only a single client can connect at a
given time.

A point-to-point network is very useful when connecting to a small number of sites or
clients. It is easier to set up, as no certificates or public key infrastructure (PKI) is required.
Also, routing is slightly easier to configure as no client-specific configuration files
containing --iroute statements are required.

Point-to-Point Networks

[8]

The drawbacks of a point-to-point network are as follows:

The lack of having perfect forward secrecy-a key compromise may result in a
total disclosure of previous sessions
The secret key must exist in plaintext form on each VPN peer

The shortest setup possible
This recipe will explain the shortest setup possible when using OpenVPN. For this setup,
you require two computers that are connected over a network (LAN or Internet). We will
use both a TUN-style network and a TAP-style network and will focus on the differences
between them. A TUN device is used mostly for VPN tunnels where only IP traffic is used.
A TAP device allows all the Ethernet frames to be passed over the OpenVPN tunnel, hence
providing support for non-IP based protocols, such as IPX and AppleTalk.

While this may seem useless at first glance, it can be very useful to quickly test whether
OpenVPN can connect to a remote system.

Getting ready
Install OpenVPN 2.3.9 or higher on two computers. Make sure the computers are connected
over a network. For this recipe, the server computer was running CentOS 6 Linux and
OpenVPN 2.3.9 and the client was running Windows 7 Pro 64bit and OpenVPN 2.3.10.

How to do it…
Here are the steps that you need to follow:

Launch the server-side (listening) OpenVPN process for the TUN-style network:1.

 [root@server]# openvpn --ifconfig 10.200.0.1 10.200.0.2 \
 --dev tun

The preceding command should be entered as a single line. The character
\ is used to denote the fact that the command continues on the next line.

Point-to-Point Networks

[9]

Then, launch the client-side OpenVPN process:2.

 [WinClient] C:\>"\Program Files\OpenVPN\bin\openvpn.exe" \
 --ifconfig 10.200.0.2 10.200.0.1 --dev tun \
 --remote openvpnserver.example.com

The following screenshot shows how a connection is established:

As soon as the connection is established, we can ping the other end of the
tunnel.

Next, stop the tunnel by pressing the F4 function key in the command window3.
and restart both ends of the tunnel using the TAP device.
Launch the server-side (listening) OpenVPN process for the TAP-style network:4.

 [root@server]# openvpn --ifconfig 10.200.0.1 255.255.255.0 \
 --dev tap

Then launch the client-side OpenVPN process:5.

 [WinClient] C:\>"
 \Program Files\OpenVPN\bin\openvpn.exe" \
 --ifconfig 10.200.0.2 255.255.255.0 --dev tap \
 --remote openvpnserver.example.com

The connection will now be established and we can again ping the other end of the tunnel.

Point-to-Point Networks

[10]

How it works…
The server listens on UDP port 1194, which is the OpenVPN default port for incoming
connections. The client connects to the server on this port. After the initial handshake, the
server configures the first available TUN device with the IP address 10.200.0.1 and it
expects the remote end (the Peer address) to be 10.200.0.2.

The client does the opposite: after the initial handshake, the first TUN or TAP-Win32 device
is configured with the IP address 10.200.0.2. It expects the remote end (the Peer address)
to be 10.200.0.1. After this, the VPN is established.

Notice the warning:
******* WARNING *******: all encryption and authentication features
disabled — all data will be tunnelled as cleartext
Here, the data is not secure: all of the data that is sent over the VPN tunnel
can be read!

There's more…
Let's look at a couple of different scenarios and check whether they would modify the
process.

Using the TCP protocol
In the previous example, we chose the UDP protocol. It would not have made any
difference if we had chosen the TCP protocol, provided that we had done that on the server
side (the side without --remote) as well as the client side. The following is the code for
doing this on the server side:

 [root@server]# openvpn --ifconfig 10.200.0.1 10.200.0.2 \
 --dev tun --proto tcp-server

Here's the code for the client side:

 [root@client]# openvpn --ifconfig 10.200.0.2 10.200.0.1 \
 --dev tun --proto tcp-client --remote openvpnserver.example.com

Point-to-Point Networks

[11]

Forwarding non-IP traffic over the tunnel
With the TAP-style interface, it is possible to run non-IP traffic over the tunnel. For
example, if AppleTalk is configured correctly on both sides, we can query a remote host
using the aecho command:

 aecho openvpnserver
 22 bytes from 65280.1: aep_seq=0. time=26. ms
 22 bytes from 65280.1: aep_seq=1. time=26. ms
 22 bytes from 65280.1: aep_seq=2. time=27. ms

A tcpdump -nnel -i tap0 command shows that the type of traffic is indeed non-IP-
based AppleTalk.

OpenVPN secret keys
This recipe uses OpenVPN secret keys to secure the VPN tunnel. It is very similar to the
previous recipe, but this time, we will use a shared secret key to encrypt the traffic between
the client and the server.

Getting ready
Install OpenVPN 2.3.9 or higher on two computers. Make sure the computers are connected
over a network. For this recipe, the server computer was running CentOS 6 Linux and
OpenVPN 2.3.9 and the client was running Windows 7 64 bit and OpenVPN 2.3.10.

How to do it…
First, generate a secret key on the server (listener):1.

 [root@server]# openvpn --genkey --secret secret.key

Transfer this key to the client side over a secure channel (for example, using scp).2.
Next, launch the server-side (listening) OpenVPN process:3.

 [root@server]# openvpn --ifconfig 10.200.0.1 10.200.0.2 \
 --dev tun --secret secret.key

Point-to-Point Networks

[12]

Then, launch the client-side OpenVPN process:4.

 [WinClient] C:\>"\Program Files\OpenVPN\bin\openvpn.exe" \
 --ifconfig 10.200.0.2 10.200.0.1 \
 --dev tun --secret secret.key \
 --remote openvpnserver.example.com

The connection is now established, as shown in the following screenshot:

How it works…
This example works exactly as the first one: the server listens to the incoming connections
on UDP port 1194. The client connects to the server on this port. After the initial
handshake, the server configures the first available TUN device with the IP
address 10.200.0.1 and it expects the remote end (Peer address) to be 10.200.0.2. The
client does the opposite.

There's more…
By default, OpenVPN uses two symmetric keys when setting up a point-to-point
connection:

A cipher key to encrypt the contents of the packets being exchanged.
An HMAC key to sign packets. When packets arrive that are not signed using the
appropriate HMAC key, they are dropped immediately. This is the first line of
defense against a “denial-of-service” attack.

Point-to-Point Networks

[13]

The same set of keys are used on both ends and both keys are derived from the
file specified using the --secret parameter.

An OpenVPN secret key file is formatted as follows:

#
2048 bit OpenVPN static key
#
-----BEGIN OpenVPN Static key V1-----
<16 lines of random bytes>
-----END OpenVPN Static key V1-----

From the random bytes, the OpenVPN Cipher and HMAC keys are derived. Note that these
keys are the same for each session.

See also
The next recipe, Multiple secret keys, will explain the format of secret keys in detail

Multiple secret keys
As stated in the previous recipe, OpenVPN uses two symmetric keys when setting up a
point-to-point connection. However, it is also possible to use shared yet asymmetric keys in
point-to-point mode. OpenVPN will use four keys in this case:

A cipher key on the client side
An HMAC key on the client side
A cipher key on the server side
An HMAC key on the server side

The same keying material is shared by both sides of the point-to-point connection, but the
keys that are derived for encrypting and signing the data are different for each side. This
recipe explains how to set up OpenVPN in this manner and how the keys can be made
visible.

Point-to-Point Networks

[14]

Getting ready
For this recipe, we use the secret.key file from the previous recipe. Install OpenVPN 2.3.9
or higher on two computers. Make sure the computers are connected over a network. For
this recipe, the server computer was running CentOS 6 Linux and OpenVPN 2.3.9 and the
client was running Windows 7 64 bit and OpenVPN 2.3.10. We'll use the secret.key file
from the OpenVPN secret keys recipe here.

How to do it…
Launch the server-side (listening) OpenVPN process with an extra option1.
to the --secret parameter and with more verbose logging:

 [root@server]# openvpn \
 --ifconfig 10.200.0.1 10.200.0.2 \
 --dev tun --secret secret.key 0 \
 --verb 7

Then launch the client-side OpenVPN process:2.

 [WinClient] C:\>"\Program Files\OpenVPN\bin\openvpn.exe" \
 --ifconfig 10.200.0.2 10.200.0.1 \
 --dev tun --secret secret.key 1\
 --remote openvpnserver \
 --verb 7

The connection will be established with a lot of debugging messages.

If we look through the server-side messages (searching for crypt), we can find the
negotiated keys on the server side. Note that the output has been reformatted for clarity:

... Static Encrypt:
Cipher 'BF-CBC' initialized with 128 bit key
... Static Encrypt:
CIPHER KEY: 80797ddc 547fbdef 79eb353f 2a1f3d1f
... Static Encrypt:
Using 160 bit message hash 'SHA1' for HMAC authentication
... Static Encrypt:
HMAC KEY: c752f254 cc4ac230 83bd8daf 6141e73d 844764d8
... Static Decrypt:
Cipher 'BF-CBC' initialized with 128 bit key
... Static Decrypt:
CIPHER KEY: 8cf9abdd 371392b1 14b51523 25302c99
... Static Decrypt:

Point-to-Point Networks

[15]

Using 160 bit message hash 'SHA1' for HMAC authentication
... Static Decrypt:
HMAC KEY: 39e06d8e 20c0d3c6 0f63b3e7 d94f35af bd744b27

On the client side, we will find the same keys but the “Encrypt” and “Decrypt” keys would
have been reversed:

... Static Encrypt:
Cipher 'BF-CBC' initialized with 128 bit key
... Static Encrypt:
CIPHER KEY: 8cf9abdd 371392b1 14b51523 25302c99
... Static Encrypt:
Using 160 bit message hash 'SHA1' for HMAC authentication
... Static Encrypt:
HMAC KEY: 39e06d8e 20c0d3c6 0f63b3e7 d94f35af bd744b27
... Static Decrypt:
Cipher 'BF-CBC' initialized with 128 bit key
... Static Decrypt:
CIPHER KEY: 80797ddc 547fbdef 79eb353f 2a1f3d1f
... Static Decrypt:
Using 160 bit message hash 'SHA1' for HMAC authentication
... Static Decrypt:
HMAC KEY: c752f254 cc4ac230 83bd8daf 6141e73d 844764d8

If you look at the keys carefully, you will see that each one of them is mirrored on the client
and the server side.

How it works…
OpenVPN derives all the keys from the static.key file, provided there is enough entropy
(randomness) in the file to reliably generate four keys. All the keys generated using the
following will have enough entropy:

 $ openvpn --genkey --secret secret.key

An OpenVPN static key file is 2,048 bits in size. The cipher keys are each 128 bits, whereas
the HMAC keys are 160 bits each, for a total of 776 bits. This allows OpenVPN to easily
generate four random keys from the static key file, even if a cipher is chosen that requires a
larger initialization key.

Point-to-Point Networks

[16]

There's more…
The same secret key files are used in a client/server setup when the tls-auth ta.key
parameter is used.

See also
The Setting up the public and private keys recipe from Chapter 2, Client-server IP-
only Networks, in which the tls-auth key is generated in a very similar manner

Plaintext tunnel
In the very first recipe, we created a tunnel in which the data traffic was not encrypted. To
create a completely plain text tunnel, we also disable the HMAC authentication. This can be
useful when debugging a bad connection, as all traffic over the tunnel can now easily be
monitored. In this recipe, we will look at how to do this. This type of tunnel is also useful
when doing performance measurements, as it is the least CPU-intensive tunnel that can be
established.

Getting ready
Install OpenVPN 2.3.9 or higher on two computers. Make sure the computers are connected
over a network. For this recipe, the server computer was running CentOS 6 Linux and
OpenVPN 2.3.9 and the client was running Fedora 22 Linux and OpenVPN 2.3.10.

As we are not using any encryption, no secret keys are needed.

How to do it…
Launch the server-side (listening) OpenVPN process:1.

 [root@server]# openvpn \
 --ifconfig 10.200.0.1 10.200.0.2 \
 --dev tun --auth none

Point-to-Point Networks

[17]

Then launch the client-side OpenVPN process:2.

 [root@client]# openvpn \
 --ifconfig 10.200.0.2 10.200.0.1 \
 --dev tun --auth none\
 --remote openvpnserver.example.com

The connection will be established with the following two warning messages as3.
the output:

 ... ******* WARNING *******: null cipher specified, no encryption will be
 used
 ... ******* WARNING *******: null MAC specified, no authentication will
 be used

How it works…
With this setup, absolutely no encryption is performed. All of the traffic that is sent over the
tunnel is encapsulated in an OpenVPN packet and then sent as is.

There's more…
To actually view the traffic, we can use tcpdump; follow these steps:

Set up the connection as outlined.1.
Start tcpdump and listen on the network interface, not the tunnel interface itself:2.

 [root@client]# tcpdump -l -w - -i eth0 -s 0 host
 openvpnserver | strings

Now, send some text across the tunnel, using something like nc (Netcat). First,3.
launch nc on the server side:

 [server]$ nc -l 31000

On the client side, launch the nc command in client mode and type hello4.
and goodbye:

 [client]$ nc 10.200.0.1 3100
 hello
 goodbye

Point-to-Point Networks

[18]

In the tcpdump window, you should now see the following:5.

Press Ctrl + C to terminate tcpdump as well as nc.6.

Routing
The point-to-point type of networks are great if you want to connect two networks together
over a static, encrypted tunnel. If you only have a small number of endpoints (fewer than
four), then routing is far easier than using a client/server setup as described in Chapter
2, Client-server IP-only Networks.

Getting ready
For this recipe, we will use the following network layout:

Point-to-Point Networks

[19]

Install OpenVPN 2.3.9 or higher on two computers. Make sure the computers are connected
over a network. For this recipe, the server computer was running CentOS 6 Linux and
OpenVPN 2.3.9 and the client was running Windows 7 64 bit and OpenVPN 2.3.10. We'll
use the secret.key file from the OpenVPN secret keys recipe here.

How to do it…
First, establish the connection, but also make sure OpenVPN has daemonized1.
itself:

 [root@server]# openvpn \
 --ifconfig 10.200.0.1 10.200.0.2 \
 --dev tun --secret secret.key \
 --daemon --log /tmp/openvpnserver.log

Then, launch the client-side OpenVPN process:2.

 [client]$ openvpn \
 --ifconfig 10.200.0.2 10.200.0.1 \
 --dev tun --secret secret.key \
 --remote openvpnserver \
 --daemon --log /tmp/openvpnclient.log

The connection is established:3.

 [server]$ tail -1 /tmp/openvpnserver.log
 Initialization Sequence Completed

Now we add routing:

On the server side, we add a static route:1.

 [root@server]# route add -net 192.168.4.0/24 gw 10.200.0.2

On the client side, we need to do two things:2.

Make sure that you have the IP traffic forwarding enabled. On Linux, this can
be achieved using the following:

 [root@client]# sysctl -w net.ipv4.ip_forward=1

Point-to-Point Networks

[20]

Note that this setting does not survive a reboot of the system.

On the Windows client on the client-side LAN, make sure there is a route
back to the OpenVPN server:

 C:> route add 10.200.0.0 mask 255.255.255.0 192.168.4.5

Here, 192.168.4.5 is the LAN IP address of the OpenVPN client.

From the server, we can now ping machines on the client LAN. First, ping the3.
LAN IP of the OpenVPN client:

 [root@server]# ping -c 2 192.168.4.5
 PING 192.168.4.5 (192.168.4.5) 56(84) bytes of data.
 64 bytes from 192.168.4.5: icmp_seq=0 ttl=64 time=31.7 ms
 64 bytes from 192.168.4.5: icmp_seq=1 ttl=64 time=31.3 ms
 --- 192.168.4.5 ping statistics ---
 2 packets transmitted, 2 received, 0% packet loss, time
 1000ms
 rtt min/avg/max/mdev = 31.359/31.537/31.716/0.251 ms, pipe 2

Then, ping the LAN IP of a machine on the OpenVPN client LAN:4.

 [root@server]# ping -c 2 192.168.4.164
 [server]$ ping -c 2 192.168.4.164
 PING 192.168.4.164 (192.168.4.164) 56(84) bytes of data.
 64 bytes from 192.168.4.164: icmp_seq=0 ttl=63 time=31.9 ms
 64 bytes from 192.168.4.164: icmp_seq=1 ttl=63 time=31.4 ms
 --- 192.168.4.164 ping statistics ---
 2 packets transmitted, 2 received, 0% packet loss, time
 1001ms
 rtt min/avg/max/mdev = 31.486/31.737/31.989/0.308 ms, pipe 2

Point-to-Point Networks

[21]

How it works…
In our network setup, the LAN we want to reach is behind the OpenVPN client, so we have
to add a route to the server:

 [server]$ route add -net 192.168.4.0/24 gw 10.200.0.2

On the client side, we need to do two things:

Make sure that the routing is enabled. If you want routing to remain enabled
after a reboot, edit the /etc/sysctl.cnf file:

 net.ipv4.ip_forward = 1

We also need to make sure that there is a route back to the OpenVPN server on
the client LAN. This can be done by adding a route to the LAN gateway or by
adding a static route to each of the machines on the client LAN. In this recipe, we
added a route to a Windows client that is in the same LAN as the OpenVPN
client:

 C:> route add 10.200.0.0 mask 255.255.255.0 192.168.4.5

Here, 192.168.4.5 is the LAN IP address of the OpenVPN client.

There's more…
Let's discuss a bit about routing issues and how to automate the setup.

Routing issues
On the OpenVPN users mailing list, a large number of the problems that are reported have
something to do with routing issues. Most of them have little to do with OpenVPN itself,
but more with understanding the routing and the flow of packets over the network.
Chapter 7, Troubleshooting OpenVPN – Routing, provides some recipes to diagnose and fix
the most common routing problems.

Point-to-Point Networks

[22]

Automating the setup
It is also possible to add the appropriate routes when the tunnel first comes up. This can be
done using the --route statement:

 [server]$ openvpn \
 --ifconfig 10.200.0.1 10.200.0.2 \
 --dev tun --secret secret.key \
 --daemon --log /var/log/openvpnserver-1.5.log \
 --route 192.168.4.0 255.255.255.0

Note that on the client LAN, the route back to the server still has to be set manually.

See also
The Three-way routing recipe, later on in this chapter, where a more complicated
setup using three remote sites is explained
Chapter 7, Troubleshooting OpenVPN – Routing

Configuration files versus the command line
Most recipes in this book can be carried out without using configuration files. However, in
most real-life cases, a configuration file is much easier to use than a lengthy command line.
It is important to know that OpenVPN actually treats configuration file entries and
command-line parameters identically. The only difference is that all command-line
parameters start with a double dash (--) whereas the configuration file entries do not. This
makes it very easy to overrule the configuration file entries using an extra command-line
parameter.

Getting ready
Install OpenVPN 2.3.9 or higher on two computers. Make sure the computers are connected
over a network. For this recipe, the server computer was running CentOS 6 Linux and
OpenVPN 2.3.9 and the client was running Windows 7 64 bit and OpenVPN 2.3.10. In this
recipe, we'll use the secret.key file from the OpenVPN secret keys recipe.

Point-to-Point Networks

[23]

How to do it…
Create a configuration file based on an earlier recipe:1.

 dev tun
 port 1194
 ifconfig 10.200.0.1 10.200.0.2
 secret secret.key
 remote openvpnserver.example.com
 verb 3

Save this file as example1-6-client.conf.2.
Launch the server-side (listening) OpenVPN process on a non-standard port:3.

 [root@server]# openvpn \
 --ifconfig 10.200.0.1 10.200.0.2 \
 --dev tun --secret secret.key \
 --port 11000

Then launch the client-side OpenVPN process and add an extra command-line4.
parameter:

 [WinClient] C:\>"\Program Files\OpenVPN\bin\openvpn.exe" \
 --config client.conf \
 --port 11000

The connection is established:

Jan 11 16:14:04 2016 UDPv4 link local (bound): [undef]
Jan 11 16:14:04 2016 UDPv4 link remote: [AF_INET]172.16.8.1:11000
Jan 11 16:14:06 2016 Peer Connection Initiated with
[AF_INET]172.16.8.1:11000
Jan 11 16:14:12 2016 TEST ROUTES: 0/0 succeeded len=0 ret=1 a=0 u/d=up
Jan 11 16:14:12 2016 Initialization Sequence Completed

How it works…
The command line and the configuration file are read and parsed from left to right and top
to bottom. This means that most options that are specified before the configuration file can
be overruled by the entries in that file. Similarly, the options specified after the following
directive overrule the entries in that file:

 --config client.conf

Point-to-Point Networks

[24]

Hence, the following option overruled the line “port 1194” from the configuration file:

 --port 11000

However, some options can be specified multiple times, in which case, the first occurrence
“wins.” In such a case, it is also possible to specify the option before specifying the --
config directive.

There's more…
Here is another example that shows the importance of the ordering of the command-line
parameters:

 C:\>"\Program Files\OpenVPN\bin\openvpn.exe" \
 --verb 0 \
 --config client.conf \
 --port 11000

This produces the exact same connection log as shown before. The verb 3 command from
the client.conf configuration file overruled --verb 0, as specified on the command line.
However, refer to the following command line:

 C:\>"\Program Files\OpenVPN\bin\openvpn.exe" \
 --config client.conf \
 --port 11000 \
 --verb 0

Using this command line, the connection log will remain entirely empty, yet the VPN
connection will be in functioning mode.

Exceptions to the rule
Some of the newer features of OpenVPN deviate slightly from this principle, most notably
the <connection> blocks and the inline certificates. Some people prefer to write the
following command:

 remote openvpnserver.example.com 1194

They prefer this instead of the following command:

 port 1194
 remote openvpnserver.example.com

Point-to-Point Networks

[25]

The downside of this notation is that this is translated as a connection block by OpenVPN.
For connection blocks, it is not possible to overrule the port using --port 11000.

Complete site-to-site setup
In this recipe, we set up a complete site-to-site network, using most of the built-in security
features that OpenVPN offers. It is intended as a “one-stop-shop” example of how to set up
a point-to-point network.

Getting ready
Install OpenVPN 2.3.9 or higher on two computers. Make sure the computers are connected
over a network. For this recipe, the server computer was running CentOS 6 Linux and
OpenVPN 2.3.9 and the client was running Fedora 22 Linux and OpenVPN 2.3.10. We'll use
the secret.key file from the OpenVPN secret keys recipe here.

We will use the following network layout:

Make sure routing (IP forwarding) is configured on both the server and client.

How to do it…
Create the server configuration file:1.

 dev tun
 proto udp
 local openvpnserver.example.com
 lport 1194
 remote openvpnclient.example.com
 rport 1194

 secret secret.key 0
 ifconfig 10.200.0.1 10.200.0.2

Point-to-Point Networks

[26]

 route 192.168.4.0 255.255.255.0

 user nobody
 group nobody # use "group nogroup" on some distros
 persist-tun
 persist-key
 keepalive 10 60
 ping-timer-rem

 verb 3
 daemon
 log-append /tmp/openvpn.log

Save it as example1-7-server.conf.2.
On the client side, create the configuration file:3.

 dev tun
 proto udp
 local openvpnclient.example.com
 lport 1194
 remote openvpnserver.example.com
 rport 1194

 secret secret.key 1
 ifconfig 10.200.0.2 10.200.0.1
 route 172.31.32.0 255.255.255.0

 user nobody
 group nobody # use "group nogroup" on some distros
 persist-tun
 persist-key
 keepalive 10 60
 ping-timer-rem

 verb 3
 daemon
 log-append /tmp/openvpn.log

Save it as example1-7-client.conf.4.
Then start the tunnel on both ends. The following is for the server end:5.

 [root@server]# openvpn --config example1-7-server.conf

Here's the code for the client end:

 [root@client]# openvpn --config example1-7-client.conf

Point-to-Point Networks

[27]

Now our site-to-site tunnel is established.

Check the log files on both the client and server to verify that the connection has6.
been established.
After the connection comes up, the machines on the LANs behind both the end7.
points can be reached over the OpenVPN tunnel. For example, when we ping a
machine on the client-side LAN from the server, we will see the following:

How it works…
The client and server configuration files are very similar:

The server listens only on one interface and one UDP port
The server accepts connections only from a single IP address and port
The client has these options mirrored

Here is the set of configuration options:

user nobody
group nobody
persist-tun
persist-key
keepalive 10 60
ping-timer-rem

These options are used to make the connection more robust and secure, as follows:

The OpenVPN process runs as user nobody and group nobody after the initial connection is
established. Even if somebody is able to take control of the OpenVPN process itself, he or
she would still only be nobody and not root. Note that on some Linux
distributions, nogroup is used instead.

Point-to-Point Networks

[28]

The persist-tun and persist-key options are used to ensure that the connection comes
back automatically if the underlying network is disrupted. These options are necessary
when using user nobody and group nobody (or group nogroup).

The keepalive and ping-timer-rem options cause OpenVPN to send a periodic “ping”
message over the tunnel to ensure that both ends of the tunnel remain up and running.

There's more…
This point-to-point setup can also be used to evade restrictive firewalls. The data stream
between the two endpoints is not recognizable and very hard to decipher. When OpenVPN
is run in client/server (see Chapter 2, Client-server IP-only Networks), the traffic is
recognizable as OpenVPN traffic due to the initial TLS handshake.

See also
The last recipe in this chapter, Using IPv6, which builds upon this recipe by
adding support for IPv6 traffic
Chapter 7, Troubleshooting OpenVPN – Routing, in which the most common
routing issues are explained

Three-way routing
For a small number (less than four) of fixed endpoints, a point-to-point setup is very
flexible. In this recipe, we set up three OpenVPN tunnels between three sites, including
routing between the endpoints. By setting up three tunnels, we create redundant routing so
that all the sites are connected even if one of the tunnels is disrupted.

Getting ready
Install OpenVPN 2.3.9 or higher on two computers. Make sure the computers are connected
over a network. For this recipe, the server computer was running CentOS 6 Linux and
OpenVPN 2.3.9 and the client was running Fedora 22 Linux and OpenVPN 2.3.10.

Point-to-Point Networks

[29]

We will use the following network layout:

Make sure that the routing (IP forwarding) is configured on all the OpenVPN endpoints.

How to do it…
We generate three static keys:1.

 [root@siteA]# openvpn --genkey --secret AtoB.key
 [root@siteA]# openvpn --genkey --secret AtoC.key
 [root@siteA]# openvpn --genkey --secret BtoC.key

Transfer these keys to all the endpoints over a secure channel (for example,2.
using scp).
Create the server (listener) configuration file named example1-8-3.
serverBtoA.conf:

 dev tun
 proto udp
 port 1194

 secret AtoB.key 0
 ifconfig 10.200.0.1 10.200.0.2

 route 192.168.4.0 255.255.255.0 vpn_gateway 5
 route 192.168.6.0 255.255.255.0 vpn_gateway 10
 route-delay

 keepalive 10 60
 verb 3

Point-to-Point Networks

[30]

Next, create an example1-8-serverCtoA.conf file:4.

 dev tun
 proto udp
 port 1195

 secret AtoC.key 0
 ifconfig 10.200.0.5 10.200.0.6

 route 192.168.4.0 255.255.255.0 vpn_gateway 5
 route 192.168.5.0 255.255.255.0 vpn_gateway 10
 route-delay

 keepalive 10 60
 verb 3

Also, create an example1-8-serverBtoC.conf file:5.

 dev tun
 proto udp
 port 1196

 secret BtoC.key 0
 ifconfig 10.200.0.9 10.200.0.10

 route 192.168.4.0 255.255.255.0 vpn_gateway 10
 route 192.168.6.0 255.255.255.0 vpn_gateway 5
 route-delay

 keepalive 10 60
 verb 3

Now, create the client (connector) configuration files, example1-8-6.
clientAtoB.conf:

 dev tun
 proto udp
 remote siteB
 port 1194

 secret AtoB.key 1
 ifconfig 10.200.0.2 10.200.0.1

 route 192.168.5.0 255.255.255.0 vpn_gateway 5
 route 192.168.6.0 255.255.255.0 vpn_gateway 10
 route-delay

Point-to-Point Networks

[31]

 keepalive 10 60
 verb 3

Also, create an example1-8-clientAtoC.conf file:7.

 dev tun
 proto udp
 remote siteC
 port 1195

 secret AtoC.key 1
 ifconfig 10.200.0.6 10.200.0.5

 route 192.168.5.0 255.255.255.0 vpn_gateway 10
 route 192.168.6.0 255.255.255.0 vpn_gateway 5
 route-delay

 verb 3

And finally, create example1-8-clientCtoB.conf:8.

 dev tun
 proto udp
 remote siteB
 port 1196

 secret BtoC.key 1
 ifconfig 10.200.0.10 10.200.0.9

 route 192.168.4.0 255.255.255.0 vpn_gateway 10
 route 192.168.5.0 255.255.255.0 vpn_gateway 5
 route-delay

 keepalive 10 60
 verb 3

First, we start all the listener tunnels:

 [root@siteB]# openvpn --config example1-8-serverBtoA.conf
 [root@siteB]# openvpn --config example1-8-serverBtoC.conf
 [root@siteC]# openvpn --config example1-8-serverCtoA.conf

These are followed by the connector tunnels:

 [root@siteA]# openvpn --config example1-8-clientAtoB.conf
 [root@siteA]# openvpn --config example1-8-clientAtoC.conf
 [root@siteC]# openvpn --config example1-8-clientCtoB.conf

Point-to-Point Networks

[32]

And with that, our three-way site-to-site network is established.

How it works…
It can be clearly seen that the number of configuration files gets out of hand too quickly. In
principle, two tunnels would have been sufficient to connect three remote sites, but then
there would have been no redundancy.

With the third tunnel and with the configuration options, there are always two routes
available for each remote network:

 route 192.168.5.0 255.255.255.0 vpn_gateway 5
 route 192.168.6.0 255.255.255.0 vpn_gateway 10
 route-delay
 keepalive 10 60

For example, site A has two routes to site B (LAN 192.168.5.0/24), as seen from the
following routing table:

 [siteA]$ ip route show
 [...]
 192.168.5.0/24 via 10.200.0.1 dev tun0 metric 5
 192.168.5.0/24 via 10.200.0.5 dev tun1 metric 10
 [...]

These are the two routes to site A:

Via the “direct” tunnel to site B; this route has the lowest metric
Via an indirect tunnel: first to site C and then to site B; this route has a higher
metric and is not chosen until the first route is down

This setup has the advantage that if one tunnel fails, then after 60 seconds, the connection
and its corresponding routes are dropped and restarted. The backup route to the other
network then automatically takes over and all three sites can reach each other again.

When the direct tunnel is restored, the direct routes are also restored and the network traffic
will automatically choose the best path to the remote site.

There's more…
Let's discuss a bit about scalability and routing protocols.

Point-to-Point Networks

[33]

Scalability
In this recipe, we connect three remote sites. This results in six different configuration files
that provide the limitations of the point-to-point setup. In general, to connect n number of
possible sites with full redundancy, you will have n * (n – 1) configuration files. This is
manageable for up to four sites, but after that, a server/multiple-client setup, as described in
the next chapters, is much easier.

Routing protocols
To increase the availability of the networks, it is better to run a routing protocol, such as
RIPv2 or OSPF. Using a routing protocol, the failing routes are discovered much faster,
resulting in less network downtime.

See also
Chapter 7, Troubleshooting OpenVPN – Routing, in which the most common
routing issues are explained

Using IPv6
In this recipe, we extend the complete site-to-site network recipe to include support for
IPv6.

Getting ready
Install OpenVPN 2.3.9 or higher on two computers. Make sure the computers are connected
over a network. For this recipe, the server computer was running CentOS 6 Linux and
OpenVPN 2.3.9 and the client was running Fedora 22 Linux and OpenVPN 2.3.10. We'll use
the secret.key file from the OpenVPN secret keys recipe here.

Point-to-Point Networks

[34]

We will use the following network layout:

How to do it…
Create the server configuration file:1.

 dev tun
 proto udp
 local openvpnserver.example.com
 lport 1194
 remote openvpnclient.example.com
 rport 1194

 secret secret.key 0
 ifconfig 10.200.0.1 10.200.0.2
 route 192.168.4.0 255.255.255.0

 tun-ipv6
 ifconfig-ipv6 2001:db8:100::1 2001:db8:100::2

 user nobody
 group nobody # use "group nogroup" on some distros
 persist-tun
 persist-key
 keepalive 10 60
 ping-timer-rem

 verb 3
 daemon
 log-append /tmp/openvpn.log

Save it as example1-9-server.conf.2.

Point-to-Point Networks

[35]

On the client side, create the configuration file:3.

 dev tun
 proto udp
 local openvpnclient.example.com
 lport 1194
 remote openvpnserver.example.com
 rport 1194

 secret secret.key 1
 ifconfig 10.200.0.2 10.200.0.1
 route 172.31.32.0 255.255.255.0

 tun-ipv6
 ifconfig-ipv6 2001:db8:100::2 2001:db8:100::1

 user nobody
 group nobody # use "group nogroup" on some distros
 persist-tun
 persist-key
 keepalive 10 60
 ping-timer-rem

 verb 3

Save it as example1-9-client.conf.4.
Then start the tunnel on both ends The following is for the server end:5.

 [root@server]# openvpn --config example1-9-server.conf

This is the code for the client end:

 [root@client]# openvpn --config example1-9-client.conf

Now our site-to-site tunnel is established.

After the connection comes up, the machines on the LANs behind both end6.
points can be reached over the OpenVPN tunnel. Notice that the client OpenVPN
session is running in the foreground.

Point-to-Point Networks

[36]

Next, ping the IPv6 address of the server endpoint to verify that IPv6 traffic over7.
the tunnel is working:

 [client]$ ping6 -c 4 2001:db8:100::1
 PING 2001:db8:100::1(2001:db8:100::1) 56 data bytes
 64 bytes from 2001:db8:100::1: icmp_seq=1 ttl=64 time=7.43 ms
 64 bytes from 2001:db8:100::1: icmp_seq=2 ttl=64 time=7.54 ms
 64 bytes from 2001:db8:100::1: icmp_seq=3 ttl=64 time=7.77 ms
 64 bytes from 2001:db8:100::1: icmp_seq=4 ttl=64 time=7.42 ms
 --- 2001:db8:100::1 ping statistics ---
 4 packets transmitted, 4 received, 0% packet loss, time 3005ms
 rtt min/avg/max/mdev = 7.425/7.546/7.778/0.177 ms

Finally, abort the client-side session by pressing Ctrl + C. The following8.
screenshot lists the full client-side log:

How it works…
Both client and server configuration files are very similar to the ones from the Complete site-
to-site setup recipe, with the addition of the following two lines:

tun-ipv6
ifconfig-ipv6 2001:db8:100::2 2001:db8:100::1

Point-to-Point Networks

[37]

This enables IPv6 support, next to the default IPv4 support.

Also, in the client configuration, the options daemon and log-append are not present,
hence all of the OpenVPN output is sent to the screen and the process continues running in
the foreground.

There's more…
Let's talk a bit about log file errors and the IPv6-only tunnel.

Log file errors
If we take a closer look at the client-side connection output, we will see a few error
messages after pressing Ctrl + C, most notably the following:

RTNETLINK answers: operation not permitted

This is a side-effect when you use the user nobody option to protect an OpenVPN setup,
and it often confuses new users. What happens is this:

OpenVPN starts as root, opens the appropriate tun device, and sets the right IPv4 and
IPv6 addresses on this tun interface.

For extra security, OpenVPN then switches to nobody, dropping all the privileges
associated with root.

When OpenVPN terminates (in our case, by pressing Ctrl + C), it closes the access to the tun
device and tries to remove the IPv4 and IPv6 addresses assigned to that device. At this
point, the error messages appear, as nobody is not allowed to perform these operations.

Upon termination of the OpenVPN process, the Linux kernel closes the tun device and all
the configuration settings are removed.

In this case, these error messages are harmless, but in general, one should pay close
attention to the warning and error messages that are printed by OpenVPN.

IPv6-only tunnel
With OpenVPN 2.3, the IPv6-only tunnel is required to always enable IPv4 support. From
OpenVPN 2.4 on, it is possible to set up an IPv6-only connection.

Point-to-Point Networks

[38]

See also
The recipe Complete site-to-site setup, earlier in this chapter, in which an IPv4-only site-to-site
setup is explained in detail.

The last recipe of Chapter 6, Troubleshooting OpenVPN – Configurations, which explains how
to interpret the OpenVPN log files in detail.

2
Client-server IP-only Networks

In this chapter, we will cover the following topics:

Setting up the public and private keys
A simple configuration
Server-side routing
Adding IPv6 support
Using client-config-dir files
Routing – subnets on both sides
Redirecting the default gateway
Redirecting the IPv6 default gateway
Using an ifconfig-pool block
Using the status file
The management interface
Proxy-arp

Introduction
The recipes in this chapter will cover the most commonly used deployment model for
OpenVPN: a single server with multiple remote clients capable of routing IP traffic.

We will also look at several common routing configurations in addition to the use of the
management interface at both the client and server side.

Client-server IP-only Networks

[40]

The last recipe of this chapter will show how it is possible to avoid the use of network
bridges for most practical use cases.

As a routed TUN-style setup is the most commonly used deployment model, some of the
sample configuration files presented in this chapter will be reused throughout the rest of the
book. In particular, the configuration files such as basic-udp-server.conf, basic-udp-
client.conf, basic-tcp-server.conf, and basic-tcp-client.conf from the Server-
side routing recipe will be reused often, as well as the Windows client configuration
files basic-udp-client.ovpn and basic-tcp-client.ovpn from the Using an ifconfig-
pool block recipe.

Setting up the public and private keys
Before we can set up a client/server VPN, we need to set up the public key infrastructure
(PKI). The PKI comprises the certificate authority, the private keys, and the certificates
(public keys) for both the client and server. We also need to generate a Diffie-Hellman
parameter file, which is required for perfect forward secrecy.

To set up PKI, we make use of the easy-rsa scripts. These scripts were originally supplied
with the OpenVPN distribution itself, but nowadays, they can also be downloaded and
installed separately.

Getting ready
The PKI needs to be set up on a trusted computer. This can be the same as the computer on
which the OpenVPN server is run, but from a security point of view, it is best if the PKI is
kept completely separate from the rest of the OpenVPN services. One option is to keep the
PKI certificate authority (CA) key located on a separate external disk, which is attached only
when required. Another option would be to keep the CA private key on a separate
computer that is not hooked up to any network at all.

This recipe was done on Linux, but can also be done on a Mac OS machine. On Windows,
the commands are very similar as well. The Linux easy-rsa scripts are meant to be run
from a bash-like shell, so make sure you are not running csh/tcsh (UNIX shells).

Client-server IP-only Networks

[41]

How to do it…
Create the directories for the PKI and copy over the easy-rsa distribution from1.
your OpenVPN installation:

 $ mkdir -m 700 -p /etc/openvpn/cookbook/keys
 $ cd /etc/openvpn/cookbook
 $ cp -drp /usr/share/easy-rsa/2.0/* .

Note that there is no need to run these commands as the root user,
provided that the user is allowed to create the above directory path.

Next, we set up the vars file. Create a file containing the following:2.

 export EASY_RSA=/etc/openvpn/cookbook
 export OPENSSL="openssl"
 export PKCS11TOOL="pkcs11-tool"
 export GREP="grep"
 export KEY_CONFIG=`$EASY_RSA/whichopensslcnf $EASY_RSA`
 export KEY_DIR="$EASY_RSA/keys"
 export PKCS11_MODULE_PATH="dummy"
 export PKCS11_PIN="dummy"
 export KEY_SIZE=2048
 export CA_EXPIRE=3650
 export KEY_EXPIRE=1000
 export KEY_COUNTRY="US"
 export KEY_PROVINCE=
 export KEY_CITY=
 export KEY_ORG="Cookbook 2.4"
 export KEY_OU=
 export KEY_CN=
 export KEY_EMAIL="openvpn@example.com"

Client-server IP-only Networks

[42]

Note that the PKCS11_MODULE_PATH and PKCS11_PIN entries are needed
even if you are not using smart cards.
Also note that some KEY_ variables are set to an empty value. This is
required for generating certificates in a batch, as we shall see later on.
The default KEY_SIZE of 2048 bits is sufficiently secure for the next few
years. A larger key size (4096 bits) is possible, but the tradeoff is a
performance penalty. We shall generate a 4096 bit CA private key, as
performance is not an issue here.
Adjust the settings (KEY_ORG, KEY_OU, KEY_EMAIL) to reflect your
organization. The meaning of these settings is explained in more details
later.

Source the vars file and generate the CA private key and certificate, using a3.
4096-bit modulus. Choose a strong password for the CA certificate. After that,
simply press the Enter key every time the script asks for input:

 $ cd /etc/openvpn/cookbook
 $. ./vars
 $./clean-all
 $ KEY_SIZE=4096 ./build-ca --pass

Sample output is shown in the following screenshot:

Client-server IP-only Networks

[43]

Next, we build the server certificate. As we do not wish to include an e-mail4.
address in every certificate, we now set the KEY_EMAIL variable to an empty
value. When the script asks for input, press the Enter key. When the script asks
for the CA private key (ca.key) password, enter the password for the CA
certificate. Finally, when the script asks for a [y/n] answer, type y:

 $ export KEY_EMAIL=
 $./build-key-server openvpnserver
 Generating a 2048 bit RSA private key

 ..
 +++
 ...+++
 writing new private key to 'openvpnserver.key'

 You are about to be asked to enter information that will be
 incorporated
 into your certificate request.
 What you are about to enter is what is called a Distinguished
 Name or a DN.
 There are quite a few fields but you can leave some blank
 For some fields there will be a default value,
 If you enter '.', the field will be left blank.

 Country Name (2 letter code) [US]:
 State or Province Name (full name) []:
 Locality Name (eg, city) []:
 Organization Name (eg, company) [Cookbook 2.4]:
 Organizational Unit Name (eg, section) []:
 Common Name (eg, your name or your server's hostname)
 [openvpnserver]:
 Name []:
 Email Address []:
 Please enter the following 'extra' attributes
 to be sent with your certificate request
 A challenge password []:
 An optional company name []:
 Using configuration from /etc/openvpn/cookbook/openssl-
 1.0.0.cnf
 Enter pass phrase for /etc/openvpn/cookbook/keys/ca.key:
 Check that the request matches the signature
 Signature ok
 The Subject's Distinguished Name is as follows
 countryName :PRINTABLE:'US'
 organizationName :PRINTABLE:'Cookbook 2.4'
 commonName :PRINTABLE:'openvpnserver'
 Certificate is to be certified until Oct 13 17:49:24 2018 GMT

Client-server IP-only Networks

[44]

 (1000 days)
 Sign the certificate? [y/n]:y
 1 out of 1 certificate requests certified, commit? [y/n]y
 Write out database with 1 new entries
 Data Base Updated

The first client certificate is generated in a batch. It is a very fast method for5.
generating a client certificate, but it is not possible to set a password on the
client's private key file. It is still required to enter the ca.key password:

 $./build-key --batch client1

Sample output is shown in the following screenshot:

The second client certificate is generated with a password. Choose a strong6.
password (but different from the CA certificate password!). The output is
abbreviated for clarity:

 $./build-key-pass --batch client2
 Generating a 2048 bit RSA private key
 +++
 +++
 writing new private key to 'client2.key'
 Enter PEM pass phrase:
 Verifying - Enter PEM pass phrase:

 Using configuration from /etc/openvpn/cookbook/openssl-
 1.0.0.cnf
 Enter pass phrase for /etc/openvpn/cookbook/keys/ca.key:
 Check that the request matches the signature
 Signature ok
 The Subject's Distinguished Name is as follows
 countryName :PRINTABLE:'US'

Client-server IP-only Networks

[45]

 organizationName :PRINTABLE:'Cookbook 2.4'
 commonName :PRINTABLE:'client2'
 Certificate is to be certified until Oct 13 17:59:15 2018 GMT
 (1000 days)
 Write out database with 1 new entries
 Data Base Updated

Next, build the Diffie-Hellman parameter file for the server:7.

And finally, generate the tls-auth key file:8.

 $ openvpn --genkey --secret ta.key

How it works…
The easy-rsa scripts are a handy set of wrapper scripts around some of the openssl ca
commands. The openssl ca commands are commonly used to set up a PKI using X509
certificates. The build-dh script is a wrapper for the openssl dh command.

There's more…
The easy-rsa scripts provide a full PKI setup, supporting different platforms and many
settings. Some of these are outlined here.

Using the easy-rsa scripts on Windows
To use the easy-rsa scripts on Windows, a command window (cmd.exe) is required and
the starting ./ needs to be removed from all the commands, for example:

 [Win]C:> vars
 [Win]C:> clean-all
 [Win]C:> build-ca

Client-server IP-only Networks

[46]

Some notes on the different variables
The following variables are set in the vars file:

KEY_SIZE=2048: This is the cipher strength for all private keys. The longer the
key size is, the stronger the encryption. Unfortunately, it also makes the
encryption process slower.
CA_EXPIRE=3650: This gives the number of days the CA certificate is considered
valid, thus translating to a period of 10 years. For a medium-secure setup, this is
fine; however, if stronger security is required, this number needs to be lowered.
KEY_EXPIRE=1000: This gives the number of days for which the client of the
server certificate is considered valid, thus translating to a period of almost 3
years.
KEY_COUNTRY="US", KEY_PROVINCE=, KEY_CITY=, KEY_ORG="Cookbook
2.4", KEY_EMAIL=openvpn@example.com: These variables are all used to form
the certificate Distinguished Name (DN). None of them are required, but both
OpenVPN and OpenSSL suggest using at least KEY_COUNTRY to indicate where a
certificate was issued.

See also
See Chapter 4, PKI, Certificates, and OpenSSL, for a lengthier introduction to
the easy-rsa scripts and the openssl commands

A simple configuration
This recipe will demonstrate how to set up a connection in the client or server mode using
certificates.

Getting ready
Install OpenVPN 2.3.9 or higher on two computers. Make sure the computers are connected
over a network. Set up the client and server certificates using the previous recipe. For this
recipe, the server computer was running CentOS 6 Linux and OpenVPN 2.3.9 and the client
was running Fedora 22 Linux and OpenVPN 2.3.10.

Client-server IP-only Networks

[47]

How to do it…
Create the server configuration file:1.

 proto udp
 port 1194
 dev tun
 server 10.200.0.0 255.255.255.0

 ca /etc/openvpn/cookbook/ca.crt
 cert /etc/openvpn/cookbook/server.crt
 key /etc/openvpn/cookbook/server.key
 dh /etc/openvpn/cookbook/dh2048.pem

Then save it as example2-2-server.conf.

Copy over the public certificates and the server private key from2.
the /etc/openvpn/cookbook/keys directory:

 [server]$ cd /etc/openvpn/cookbook
 [server]$ cp keys/ca.crt ca.crt
 [server]$ cp keys/openvpnserver.crt server.crt
 [server]$ cp keys/openvpnserver.key server.key
 [server]$ cp keys/dh2048.pem dh2048.pem

Note that there is no need to run the preceding commands as user root,
provided that write access to these directories has been given.

Start the server:3.

 [root@server]# openvpn --config example2-2-server.conf

Next, create the client configuration file:4.

 client
 proto udp
 remote openvpnserver.example.com
 port 1194
 dev tun
 nobind

 ca /etc/openvpn/cookbook/ca.crt
 cert /etc/openvpn/cookbook/client1.crt
 key /etc/openvpn/cookbook/client1.key

Client-server IP-only Networks

[48]

Then save it as example2-2-client.conf.

Transfer the files such as ca.crt, client1.crt, and client1.key to the client5.
machine using a secure channel; for example, using the scp command:

Then, start the client:6.

 [root@client]# openvpn --config example2-2-client.conf
 [...]
 [openvpnserver] Peer Connection Initiated with
 openvpnserver:1194
 TUN/TAP device tun0 opened
 /sbin/ip link set dev tun0 up mtu 1500
 /sbin/ip addr add dev tun0 local 10.200.0.6 peer 10.200.0.5
 Initialization Sequence Completed

After the connection is established, we can verify that it is working by pinging the
server (notice the IP address):

 [client]$ ping -c 2 10.200.0.1
 PING 10.200.0.1 (10.200.0.1) 56(84) bytes of data.
 64 bytes from 10.200.0.1: icmp_seq=1 ttl=64 time=30.6 ms
 64 bytes from 10.200.0.1: icmp_seq=2 ttl=64 time=30.7 ms

How it works…
When the server starts, it configures the first available TUN interface with the IP address
10.200.0.1 and with a fake remote address of 10.200.0.2. After that, the server listens
on the UDP port 1194 for incoming connections.

The client connects to the server on this port. After the initial TLS handshake, using both the
client and server certificates, the client is assigned the IP address 10.200.0.6 (or rather the
mini-network 10.200.0.4 – 10.200.0.7). The client configures its first available TUN
interface using this information, after which the VPN is established.

Client-server IP-only Networks

[49]

There's more…
After the connection is established, you can query the tun0 interface like this:

 [client]$ /sbin/ifconfig tun0 | grep inet

Then, look for the following:

inet addr:10.200.0.6 P-t-P:10.200.0.5

The IP address 10.200.0.5 is a placeholder address and can never be reached. Starting
with OpenVPN 2.1, it has also become possible to assign linear addresses to the clients that
allow you to have more clients in the same range of IP addresses. This will be explained in
the next recipe.

The first address is the VPN client address from a /30 subnet, and the second address is the
fake remote endpoint address. Each /30 subnet has to start at a multiple of four, and the
VPN client IP address is at the starting address plus two:

10.200.0.[0-3], the VPN IP is 10.200.0.1. Normally, this block is for the
OpenVPN server itself.
10.200.0.[4-7], the client IP is 10.200.0.6. Normally, this block is for the
first client to connect.
10.200.0.[8-11], [12-15], [16-19], and so on are used for consecutive
clients.

Because of the /30 subnet for each address, this topology mode is known as net30. It is still
the default topology mode, but this will change in the near future.

Server-side routing
This recipe will demonstrate how to set up server-side routing in client or server mode.
With this setup, the OpenVPN client will be able to reach all the machines behind the
OpenVPN server.

Compared to the previous recipe, this recipe contains extra settings that are often used in
production environments including the use of linear addresses (topology subnet).

The configuration files used in this recipe are useful building blocks for other recipes
throughout this book; therefore, they are named basic-udp-server.conf, basic-udp-
client.conf, and so on.

Client-server IP-only Networks

[50]

Getting ready
Install OpenVPN 2.3.9 or higher on two computers. Make sure the computers are connected
over a network. Set up the client and server certificates using the previous recipe. For this
recipe, the server computer was running CentOS 6 Linux and OpenVPN 2.3.9 and the client
was running Fedora 20 Linux and OpenVPN 2.3.9.

We use the following network layout here:

How to do it…
Create the server configuration file:1.

 proto udp
 port 1194
 dev tun
 server 10.200.0.0 255.255.255.0

 ca /etc/openvpn/cookbook/ca.crt
 cert /etc/openvpn/cookbook/server.crt
 key /etc/openvpn/cookbook/server.key
 dh /etc/openvpn/cookbook/dh2048.pem
 tls-auth /etc/openvpn/cookbook/ta.key 0

 persist-key
 persist-tun
 keepalive 10 60

 push "route 10.198.0.0 255.255.0.0"
 topology subnet

 user nobody

Client-server IP-only Networks

[51]

 group nobody # use "group nogroup" on some distros

 daemon
 log-append /var/log/openvpn.log

Then save it as basic-udp-server.conf. Note that in some Linux
distributions, the group nogroup is used instead of nobody.

Copy over the tls-auth secret key file from the 2.
/etc/openvpn/cookbook/keys directory:

 [root@server]# cp keys/ta.key ta.key

Then start the server:3.

 root@server]# openvpn --config basic-udp-server.conf

Make sure IP-traffic forwarding is enabled on the server:4.

 [root@server]# sysctl -w net.ipv4.ip_forward=1

Next, create the client configuration file:5.

 client
 proto udp
 remote openvpnserver.example.com
 port 1194
 dev tun
 nobind

 ca /etc/openvpn/cookbook/ca.crt
 cert /etc/openvpn/cookbook/client1.crt
 key /etc/openvpn/cookbook/client1.key
 tls-auth /etc/openvpn/cookbook/ta.key 1

 remote-cert-tls server

Save it as basic-udp-client.conf.

Transfer the tls-auth secret key file, ta.key, to the client machine using a6.
secure channel, such as scp:

 [root@client]# scp \
 openvpnserver:/etc/openvpn/cookbook/keys/ta.key .

Client-server IP-only Networks

[52]

Start the client:7.

 [root@client]# openvpn --config basic-udp-client.conf
 OpenVPN 2.3.9 x86_64-redhat-linux-gnu [SSL (OpenSSL)] [LZO]
 [EPOLL][PKCS11] [MH] [IPv6] built on Dec 16 2015
 library versions: OpenSSL 1.0.1e-fips 11 Feb 2013, LZO 2.08
 Control Channel Authentication: using
 '/etc/openvpn/cookbook/ta.key' as a OpenVPN static key file
 UDPv4 link local: [undef]
 UDPv4 link remote: [AF_INET]openvpnserver:1194
 [openvpnserver] Peer Connection Initiated with
 [AF_INET]openvpnserver:1194
 TUN/TAP device tun0 opened
 do_ifconfig, tt->ipv6=0, tt->did_ifconfig_ipv6_setup=0
 /usr/sbin/ip link set dev tun0 up mtu 1500
 /usr/sbin/ip addr add dev tun0 10.200.0.2/24 broadcast
 10.200.0.255
 Initialization Sequence Completed

Add a route to the server-side gateway, gateway1, so that all VPN traffic is sent8.
back to the VPN server. In this recipe, we use a router that understands a Linux
ip route like syntax:

 [gateway1]> ip route add 10.200.0.0/24 via 10.198.1.1

After the VPN is established, verify that we are able to ping a machine on the remote server
LAN:

 [client]$ ping -c 2 10.198.0.10
 PING 10.198.0.10 (10.198.0.10) 56(84) bytes of data.
 64 bytes from 10.198.0.10: icmp_seq=1 ttl=63 time=31.1 ms
 64 bytes from 10.198.0.10: icmp_seq=2 ttl=63 time=30.0 ms

How it works…
The server starts and configures the first available TUN interface with the IP address
10.200.0.1. With the directive topology subnet, the fake remote address is also
10.200.0.1. After that, the server listens on the UDP port 1194 for incoming connections. For
security reasons, the OpenVPN process switches to user and group nobody. Even if a
remote attacker was able to compromise the OpenVPN process, the security breach would
be contained to the user nobody instead of the user root. When the user and group
directives are used, it is wise to add the following as well:

Client-server IP-only Networks

[53]

persist-key
persist-tun

Otherwise, OpenVPN will not be able to restart itself correctly.

Another security measure is the use of the following on the server side (and ta.key 1 on
the client side):

tls-auth /etc/openvpn/cookbook/ta.key 0

This prevents the server from being overloaded by a so-called Distributed Denial of
Service (DDoS) attack, as OpenVPN will just ignore those packets immediately if the
HMAC is not correct.

The following directive sets up a keepalive timer on both the client and the server side:

keepalive 10 60

Every 10 seconds, a packet is sent from the server to the client side and vice versa to ensure
that the VPN tunnel is still up and running. If no reply is received after 60 seconds on the
client side, the VPN connection is automatically restarted. On the server side, the timeout
period is multiplied by two; hence the server will restart the VPN connection if no reply is
received after 120 seconds.

Finally, the following directives are very commonly used in a production setup, where the
OpenVPN process continues to run in the background (daemonizes itself) after the operator
logs out:

daemon
log-append /var/log/openvpn.log

All output of the OpenVPN process is appended to the log file, /var/log/openvpn.log.
You can use the tail -f command to monitor the output of the OpenVPN process.

The client connects to the server. After the initial TLS handshake, using both the client and
server certificates, the client is assigned the IP address 10.200.0.2. The client configures
its first available TUN interface using this information and updates its routing table so that
traffic for the server-side Site B's LAN is tunneled over the VPN.

There's more…
As the example files used in this recipe are reused later on, it is useful to explain a bit more
about the options used.

Client-server IP-only Networks

[54]

Linear addresses
After the connection is established, you can query the tun0 interface like this:

 [client]$ /sbin/ifconfig tun0 | grep inet

Then, look for the following:

inet addr:10.200.0.2 P-t-P:10.200.0.2

This is caused by the topology subnet directive, which is something new in OpenVPN
2.1. This directive tells OpenVPN to assign only a single IP address to each client. With
OpenVPN 2.0, the minimum number of IP addresses per client is four (as we can see in the
previous recipe).

Using the TCP protocol
In the previous example, we chose the UDP protocol. The configuration files in this recipe
can easily be converted to use the TCP protocol by changing the following line:

proto udp

It should be changed to the following:

proto tcp

This should be done in both the client and server configuration files. Save these files as
basic-tcp-server.conf and basic-tcp-client.conf for future use:

 $ cd /etc/openvpn/cookbook
 $ sed 's/proto udp/proto tcp' basic-udp-server.conf \
 > basic-tcp-server.conf
 $ sed 's/proto udp/proto tcp/' basic-udp-client.conf \
 > basic-tcp-client.conf

Server certificates and ns-cert-type server
On the client side, the remote-cert-tls server directive is often used in combination
with a server certificate that is built using the following:

 $ build-key-server

Client-server IP-only Networks

[55]

This is done in order to prevent man-in-the-middle attacks. The idea is that a client will
refuse to connect to a server that does not have a special server certificate. By doing this, it is
no longer possible for a malicious client to pose as a server. This option also supports
certificates with explicit key usage and extended key usage, based on the RFC 3280 TLS
rules.

Older versions of OpenVPN used the ns-cert-type server directive. This option is still
supported, but it will be deprecated in a future version of OpenVPN.

Masquerading
In this recipe, the gateway on the server-side LAN is configured with an extra route for the
VPN traffic. Sometimes, this is not possible, in which case, the Linux iptables command
can be used to set up masquerading:

 [root@server]# iptables -t nat -I POSTROUTING -o eth0 \
 -s 10.200.0.0/24 -j MASQUERADE

This instructs the Linux kernel to rewrite all traffic that is coming from the subnet
10.200.0.0/24 (that is, our OpenVPN subnet) and that is leaving the Ethernet
interface eth0. Each of these packets has its source address rewritten so that it appears as if
it's coming from the OpenVPN server itself and not from the OpenVPN client.
The iptables module keeps track of these rewritten packets so that when a return packet
is received, the reverse is done and the packets are forwarded back to the OpenVPN client
again. This is an easy method to enable routing to work, but there is a drawback when
many clients are used, as it is no longer possible to distinguish traffic on Site B's LAN if it is
coming from the OpenVPN server itself, from client1 via the VPN tunnel, or from clientN
via the VPN tunnel.

Adding IPv6 support
Support for IPv6 addresses is relatively new in OpenVPN. As IPv6 addresses are now being
used more and more by companies and Internet Service Providers, this recipe provides a
setup for using IPv6 for tunnel endpoints as well as using it inside the tunnel.

Client-server IP-only Networks

[56]

Getting ready
This recipe is a continuation of the previous one. Install OpenVPN 2.3.9 or higher on two
computers. Make sure the computers are connected over a network. Set up the client and
server certificates using the previous recipe. For this recipe, the server computer was
running CentOS 6 Linux and OpenVPN 2.3.9 and the client was running Fedora 20 Linux
and OpenVPN 2.3.9. Keep the configuration file, basic-udp-server.conf, from the
previous recipe at hand as well as the client configuration file, basic-udp-client.conf.

How to do it…
Modify the server configuration file, basic-udp-server.conf, by adding a1.
line:

 server-ipv6 2001:db8:100::0/112

Then save it as example2-4-server.conf.

Start the server:2.

 [root@server]# openvpn --config example2-4-server.conf
 [...]
 do_ifconfig, tt->ipv6=1, tt->did_ifconfig_ipv6_setup=1
 /sbin/ip link set dev tun0 up mtu 1500
 /sbin/ip addr add dev tun0 10.200.0.1/24 broadcast
 10.200.0.255
 /sbin/ip -6 addr add 2001:db8:100::1/112 dev tun0
 [...]

Start the client using the configuration file from the previous recipe:3.

 [root@client]# openvpn --config basic-udp-client.conf
 [...]
 [openvpnserver] Peer Connection Initiated with
 [AF_INET]openvpnserver:1194
 TUN/TAP device tun0 opened
 do_ifconfig, tt->ipv6=1, tt->did_ifconfig_ipv6_setup=1
 /usr/sbin/ip link set dev tun0 up mtu 1500
 /usr/sbin/ip addr add dev tun0 10.200.0.2/24 broadcast
 10.200.0.255
 /usr/sbin/ip -6 addr add 2001:db8:100::1000/112 dev tun0
 Initialization Sequence Completed

Client-server IP-only Networks

[57]

The output showing that OpenVPN has configured an IPv6 address is shown
in boldface.

Verify that we can reach the server using the ping6 command:4.

 [client]$ ping6 -c 4 2001:db8:100::
 PING 2001:db8:100::1(2001:db8:100::1) 56 data bytes
 64 bytes from 2001:db8:100::1: icmp_seq=1 ttl=64 time=9.01 ms
 64 bytes from 2001:db8:100::1: icmp_seq=2 ttl=64 time=10.8 ms
 64 bytes from 2001:db8:100::1: icmp_seq=3 ttl=64 time=9.42 ms
 64 bytes from 2001:db8:100::1: icmp_seq=4 ttl=64 time=8.36 ms
 --- 2001:db8:100::1 ping statistics ---
 4 packets transmitted, 4 received, 0% packet loss, time
 3004ms
 rtt min/avg/max/mdev = 8.364/9.409/10.832/0.904 ms

How it works…
IPv6 support in OpenVPN works almost exactly like IPv4. The addressing format is
different and most options need an extra -ipv6 suffix.

There's more…
There are a couple of useful tricks to keep in mind when using client configuration files.
Some of these tricks are explained here.

IPv6 endpoints
If the server openvpnserver.example.com resolves to an IPv6 address and the client has
a valid IPv6 address, then the connection can be automatically established using IPv6. This
is achieved by changing the proto udp line in both client and server configurations
to proto udp6. It is then also possible to specify an IPv6 address for the server, using the
following command:

 remote 2001:db8:120:e120:225:90ff:fec0:3ed1

Note that even with proto udp6 in the server configuration file, IPv4 clients can still
connect.

Client-server IP-only Networks

[58]

IPv6-only setup
Even with OpenVPN 2.4, it is not yet possible to set up an IPv6-only VPN. You must always
supply an (bogus) IPv4 address range for the VPN IP space. However, with OpenVPN 2.4,
it is possible to set up an OpenVPN server that will accept requests only from IPv6-enabled
clients. A new flag for the bind directive was added for this:

proto udp6
bind ipv6only

Using client-config-dir files
In a setup where a single server can handle many clients, it is sometimes necessary to set
per-client options that overrule the global options. The client-config-dir option is very
useful for this. It allows the administrator to assign a specific IP address to a client; to push
specific options, such as compression and DNS server, to a client; or to temporarily disable
a client altogether.

Getting ready
This recipe is a continuation of the previous one. Install OpenVPN 2.3.9 or higher on two
computers. Make sure the computers are connected over a network. Set up the client and
server certificates using the previous recipe. For this recipe, the server computer was
running CentOS 6 Linux and OpenVPN 2.3.9 and the client was running Fedora 20 Linux
and OpenVPN 2.3.9. Keep the server configuration file, basic-udp-server.conf, at hand
along with the client configuration file, basic-udp-client.conf, from the Server-side
routing recipe.

How to do it…
Modify the server configuration file, basic-udp-server.conf, by adding a1.
line:

 client-config-dir /etc/openvpn/cookbook/clients

Then save it as example2-5-server.conf.

Client-server IP-only Networks

[59]

Next, create the directory for the client-config files and place a file in there2.
with the name of the client certificate. This file needs to contain a single line with
the IP address for the client listed twice:

 [root@server]# mkdir -m 755 /etc/openvpn/cookbook/clients
 [root@server]# cd /etc/openvpn/cookbook/clients
 [root@server]# echo "ifconfig-push 10.200.0.7 10.200.0.7" \
 > client1

This name can be retrieved from the client certificate file using the following:3.

 [server]$ openssl x509 -subject -noout -in client1.crt
 subject= /C=US/O=Cookbook 2.4/CN=client1

Start the server:4.

 [root@server]# openvpn --config example2-5-server.conf

Start the client using the configuration file from the previous recipe:5.

 [root@client]# openvpn --config basic-udp-client.conf
 [...]
 [openvpnserver] Peer Connection Initiated with
 [AF_INET]openvpnserver:1194
 TUN/TAP device tun0 opened
 do_ifconfig, tt->ipv6=0, tt->did_ifconfig_ipv6_setup=0
 /usr/sbin/ip link set dev tun0 up mtu 1500
 /usr/sbin/ip addr add dev tun0 10.200.0.7/24 broadcast
 10.200.0.255
 Initialization Sequence Completed

How it works…
When a client connects to the server with its certificate and with the certificate's common
name client1, the OpenVPN server checks whether there is a corresponding client
configuration file (also known as a CCD file) in the client-config-dir directory. If it
exists, it is read in as an extra set of options for that particular client. In this recipe, we use it
to assign a specific IP address to a client (although there are more flexible ways to do that).
The client is now always assigned the IP address 10.200.0.7.

The client configuration file contains a single line, ifconfig-push 10.200.0.7
10.200.0.7, which instructs the OpenVPN server to push the client IP
address 10.200.0.7 to this particular client. The IP address needs to be listed twice, which
is mostly due to the legacy of topology net30 mode.

Client-server IP-only Networks

[60]

In this mode, which is still the default in OpenVPN 2.3, a remote endpoint address is
always needed and it needs to be within a /30 network range of the client's VPN IP address.
In topology subnet mode, it suffices to list the client's VPN IP address twice, or to list the
client's VPN IP address followed by a netmask.

There's more…
There are a couple of useful tricks to keep in mind when using client configuration files.
Some of these tricks are explained here.

The default configuration file
If the following conditions are met, then the DEFAULT file is read and processed instead:

A client-config-dir directive is specified
There is no matching client file for the client's certificate in that directory
A file called DEFAULT does exist in that directory

Please note that this name is case-sensitive.

Troubleshooting
Troubleshooting configuration problems with CCD files is a recurring topic on the
OpenVPN mailing lists. The most common configuration errors are as follows:

Always specify the full path in the client-config-dir directive
Make sure the directory is accessible and the CCD file, is readable to the user
which is used to run OpenVPN (nobody or openvpn in most cases)
Make sure that the right filename is used for the CCD file, without any extensions

Options allowed in a client-config-dir file
The following configuration options are allowed in a CCD file:

push: This option is used for pushing DNS servers, WINS servers, routes, and so
on
push-reset: This option is used to overrule global push options
iroute: This option is used for routing client subnets to the server

Client-server IP-only Networks

[61]

ifconfig-push: This option is used for assigning a specific IP address, as done
in this recipe
disable: This option is used for temporarily disabling a client altogether
config: This option is used for including another configuration file

Routing – subnets on both sides
This recipe will demonstrate how to set up server-side and client-side routing in
client/server mode. With this setup, the OpenVPN client will be able to reach all the
machines behind the OpenVPN server, and the server will be able to reach all the machines
behind the client.

Getting ready
This recipe uses the PKI files created in the first recipe of this chapter. Install OpenVPN
2.3.9 or higher on two computers. Make sure the computers are connected over a network.
For this recipe, the server computer was running CentOS 6 Linux and OpenVPN 2.3.9 and
the client was running Fedora 20 Linux and OpenVPN 2.3.9. Keep the server configuration
file, basic-udp-server.conf, handy along with the client configuration file, basic-udp-
client.conf, from the Server-side routing recipe.

We use the following network layout:

Client-server IP-only Networks

[62]

How to do it…
Modify the server configuration file, basic-udp-server.conf, by adding these1.
lines:

 client-config-dir /etc/openvpn/cookbook/clients
 route 192.168.4.0 255.255.255.0 10.200.0.1

Then save it as example2-6-server.conf.

Next, create the directory for the client configuration files:2.

 [root@server]# mkdir -m 755 /etc/openvpn/cookbook/clients

Place a file in this directory with the name of the client certificate. This file will3.
contain a single line:

 iroute 192.168.4.0 255.255.255.0

The name of the client certificate can be retrieved from the client certificate
file using the following command:

 $ openssl x509 -subject -noout -in client1.crt
 subject= /C=US/O=Cookbook 2.4/CN=client1

Thus, for this recipe, the client configuration file needs to be named client1,
without an extension.

Start the server:4.

 [root@server]# openvpn --config example2-6-server.conf

Start the client:5.

 [root@client]# openvpn --config basic-udp-client.conf

After the VPN is established, we need to set up routing on both sides. Enable the6.
IP traffic forwarding feature on the server:

 [root@server]# sysctl -w net.ipv4.ip_forward=1

Add a route to LAN B's Gateway to point to the OpenVPN server itself:7.

 [siteB-gw]> ip route add 192.168.4.0/24 via 10.198.1.1
 [siteB-gw]> ip route add 10.200.0.0/24 via 10.198.1.1

Client-server IP-only Networks

[63]

Here, 10.198.1.1 is the LAN IP address of the OpenVPN server used in this
recipe.

Now set up routing on the client side:8.

 [client]$ sysctl -w net.ipv4.ip_forward=1

And similarly, add a route for the LAN A Gateway:9.

 [siteA-gw]> ip route add 10.198.0.0/16 via 192.168.4.5
 [siteA-gw]> ip route add 10.200.0.0/24 via 192.168.4.5

Here, 192.168.4.5 is the LAN IP address of the OpenVPN client used in
this recipe.

Now, we verify that we can ping a machine on the remote server LAN:10.

 [client]$ ping -c 2 10.198.0.10
 PING 10.198.0.10 (10.198.0.10) 56(84) bytes of data.
 64 bytes from 10.198.0.10: icmp_seq=1 ttl=63 time=31.1 ms
 64 bytes from 10.198.0.10: icmp_seq=2 ttl=63 time=30.0 ms

We verify the same vice versa:

 [server]$ ping -c 2 192.168.4.164
 PING 192.168.4.164 (192.168.4.164) 56(84) bytes of data.
 64 bytes from 192.168.4.164: icmp_seq=1 ttl=64 time=30.2 ms
 64 bytes from 192.168.4.164: icmp_seq=2 ttl=64 time=29.7 ms

How it works…
When a client connects to the server with its certificate and with the certificate's common
name, client1, the OpenVPN server reads the client configuration file (also known as a
CCD file) in the client-config-dir directory. The following directive in this file tells the
OpenVPN server that the subnet 192.168.4.0/24 is reachable through the client client1:

iroute 192.168.4.0 255.255.255.0

This directive has nothing to do with a kernel routing table and is only used internally by
the OpenVPN server process.

Client-server IP-only Networks

[64]

The following server directive is used by OpenVPN to configure the routing table of the
operating system so that all of the traffic intended for the subnet 192.168.4.0/24 is
forwarded to the interface with the IP address 10.200.0.1, which is the VPN IP of the
server:

route 192.168.4.0 255.255.255.0 10.200.0.1

With the appropriate routing set up on both ends, site-to-site routing is now possible.

There's more…
When routing client-side traffic to and from multiple clients, there are several caveats to be
aware of.

Masquerading
We could have used masquerading on both ends as well, but with multiple clients it
becomes very hard to keep track of the network traffic.

Client-to-client subnet routing
If another VPN client needs to reach the subnet 192.168.4.0/24 behind client client1,
the server configuration file needs to be extended with the following:

push "route 192.168.4.0 255.255.255.0"

This instructs all clients that subnet 192.168.4.0/24 is reachable through the VPN tunnel,
except for client client1. The client client1 itself is excluded due to the
matching iroute entry.

No route statements in a CCD file
Note that you cannot use the route directive inside a CCD file. This is a long-standing
missing feature of OpenVPN. It is possible to achieve similar behavior using a learn-
address script, as we will learn in Chapter 5, Scripting and Plugins.

Client-server IP-only Networks

[65]

See also
The Complete site-to-site setup recipe from Chapter 1, Point-to-Point Networks,
where it is explained how to connect two remote LANs via a VPN tunnel using a
point-to-point setup
The Using a learn-address script recipe from Chapter 5, Scripting and Plugins,
where it is explained how to use a learn-address script to dynamically set and
remove server-side routes

Redirecting the default gateway
A very common use of a VPN is to route all of the traffic over a secure tunnel. This allows
one to safely access a network or even the Internet itself from within a hostile environment
(for example, a poorly protected, but properly trojaned Internet cafeteria).

In this recipe, we will set up OpenVPN to do exactly this. This recipe is very similar to the
Server-side routing recipe, but there are some pitfalls when redirecting all of the traffic over a
VPN tunnel.

Getting ready
The network layout used in this recipe is the same as in the Server-side routing recipe.

This recipe uses the PKI files created in the first recipe of this chapter. Install OpenVPN
2.3.9 or higher on two computers. Make sure the computers are connected over a network.
For this recipe, the server computer was running CentOS 6 Linux and OpenVPN 2.3.9 and
the client was running Fedora 20 Linux and OpenVPN 2.3.9. Keep the server configuration
file, basic-udp-server.conf, at hand along with the client configuration file, basic-
udp-client.conf, from the Server-side routing recipe.

How to do it…
Create the server configuration file by adding a line to the basic-udp-1.
server.conf file:

 push "redirect-gateway def1"

Client-server IP-only Networks

[66]

Save it as example2-7-server.conf.

Start the server:2.

 [root@server]# openvpn --config example2-7-server.conf

In another server terminal, enable IP-traffic forwarding:3.

 [root@server]# sysctl -w net.ipv4.ip_forward=1

Start the client:4.

 [root@client]# openvpn --config basic-udp-client.conf

You will observe something like this:

After the VPN is established, verify that all of the traffic is going over the tunnel:5.

The first address in the traceroute output is the address of the OpenVPN
server, hence all of the traffic is routed over the tunnel.

How it works…
When the client connects to the OpenVPN server, a special redirect statement is pushed out
by the server to the OpenVPN client:

push "redirect-gateway def1"

Client-server IP-only Networks

[67]

The configuration option def1 tells the OpenVPN client to add three routes to the client
operating system:

192.168.96.101 via 192.168.4.1 dev eth0
0.0.0.0/1 via 10.200.0.1 dev tun0
128.0.0.0/1 via 10.200.0.1 dev tun0

The first route is an explicit route from the client to the OpenVPN server via the LAN
interface. This route is needed as otherwise all the traffic for the OpenVPN server itself
would go through the tunnel.

The other two routes are a clever trick to overrule the default route so that all of the traffic is
sent through the tunnel instead of to the default LAN gateway. The existing default route to
the LAN gateway is not deleted due to the def1 parameter.

There's more…
There are many parameters and flags related to the redirect-gateway directive. A subset
of these parameters is listed here as well as some other special use cases.

Redirect-gateway parameters
Originally, OpenVPN supported only the following directive:

push "redirect-gateway"

This is used to delete the original default route and replace it with a route to the OpenVPN
server. This may seem like a clean solution, but in some cases, OpenVPN was unable to
determine the existing default route. This often happened to clients connecting through
mobile connections. This also used to create routing lockups, where all of the traffic was
routed through the tunnel, including the packets sent by the OpenVPN client itself.

With the current version of OpenVPN, there are several flags for the redirect-gateway
directive:

local: This flag tells OpenVPN to not set a direct route from the client to the
server. It is useful only if the client and server are in the same LAN, such as when
securing wireless networks.
block-local: This flag instructs OpenVPN to block all of the network access to
the LAN after the VPN tunnel is established. This is achieved by routing all of the
LAN traffic into the tunnel itself, except for the traffic to the OpenVPN server
itself.

Client-server IP-only Networks

[68]

bypass-dhcp: This flag adds a direct route to the local DHCP server. If the local
DHCP server is on a separate subnet, this will ensure that the DHCP addresses
assigned to the non-VPN interfaces will continue to be refreshed. This option is
picked up automatically by a Windows client. On other operating systems, a
plugin or script is required.
bypass-dns: This flag adds a direct route to the local DNS server. In large-scale
networks, the DNS server is often not found on the local subnet that the client is
connected to. If the route to this DNS server is altered to go through the VPN
tunnel after the client has connected, this will cause, at the very least, a serious
performance penalty. More likely, the entire DNS server will become
unreachable. It is picked up by a Windows client automatically and requires a
plugin or script on other operating systems.
!ipv4: This flag was added in OpenVPN 2.4 and it instructs OpenVPN to not
redirect any IPv4 traffic over the VPN tunnel. It is useful only in combination
with the flag ipv6. We will go into detail more in the next recipe.
ipv6: This flag was added in OpenVPN 2.4 and it instructs OpenVPN to also
redirect all IPv6 traffic over the VPN tunnel. We will go into more detail in the
next recipe.

The redirect-private option
Apart from the redirect-gateway directive, OpenVPN has a second, comparatively less
well-known, option called redirect-private. This option takes the same parameters as
the redirect-gateway directive, but it instructs OpenVPN to make no changes to the
default routes at all. It is used most often in combination with the bypass-dhcp, bypass-
dns, ipv6, and block-local flags.

Split tunneling
In some cases, the redirect-gateway parameter is a bit too restrictive. You might want to
add a few routes to local networks and route all other traffic over the VPN tunnel. The
OpenVPN route directive has a few special parameters for this:

net_gateway: This is a special gateway representing the LAN gateway address
that OpenVPN determined when starting. For example, to add a direct route to
the LAN 192.168.4.0/24, you would add the following to the client
configuration file:

 route 192.168.4.0 255.255.255.0 net_gateway

Client-server IP-only Networks

[69]

vpn_gateway: This is a special gateway representing the VPN gateway address.
If you want to add a route that explicitly sends traffic for a particular subnet over
the VPN tunnel, overruling any local routes, you would add the following
option:

 route 10.198.0.0 255.255.0.0 vpn_gateway

See also
The Server-side routing recipe, where the basic steps of setting up server-side
routing is explained

Redirecting the IPv6 default gateway
With the advent of IPv6 networks, it is becoming increasingly important to be able to set up
a VPN that will secure both IPv4 and IPv6 traffic. If only IPv4 traffic is secured over a VPN
tunnel, then it is still possible for traffic to leak out over IPv6. In this recipe, we will set up
OpenVPN to secure all IPv6 traffic as well. Support for this was added in OpenVPN 2.4.

Getting ready
The network layout used in this recipe is the same as in the Server-side routing recipe.

This recipe uses the PKI files created in the first recipe of this chapter. Install OpenVPN 2.4
or higher on two computers. Make sure the computers are connected over a network. For
this recipe, the server computer was running CentOS 6 Linux and OpenVPN 2.4 and the
client was running Fedora 20 Linux and OpenVPN 2.4. For the server, keep the IPv6
configuration file, example2-4-server.conf, from the Adding IPv6 support recipe at hand.
For the client, keep the configuration file, basic-udp-client.conf, from the Server-side
routing recipe at hand.

Client-server IP-only Networks

[70]

How to do it…
Create the server configuration file by adding a line to the example2-4-1.
server.conf file:

 push "redirect-gateway ipv6 !ipv4"

Save it as example2-8-server.conf.

Start the server:2.

 [root@server]# openvpn --config example2-8-server.conf

In another server terminal, enable IP-traffic forwarding:3.

 [root@server]# sysctl -w net.ipv6.conf.all.forwarding=1

Start the client:4.

 [root@client]# openvpn --config basic-udp-client.conf
 [...]
 add_route_ipv6(::/3 -> 2001:db8:100::1 metric -1) dev tun1
 add_route_ipv6(2000::/4 -> 2001:db8:100::1 metric -1) dev
 tun1
 add_route_ipv6(3000::/4 -> 2001:db8:100::1 metric -1) dev
 tun1
 add_route_ipv6(fc00::/7 -> 2001:db8:100::1 metric -1) dev
 tun1
 Initialization Sequence Completed

How it works…
When the client connects to the OpenVPN server, a special redirect statement is pushed out
by the server to the OpenVPN client:

push "redirect-gateway ipv6 !ipv4"

The configuration flag ipv6 tells the OpenVPN client to redirect all of the IPv6 traffic over
the tunnel, by adding three routes to the client operating system:

2000::/4
3000::/4
fc00::/4

This effectively redirects all of the IPv6 traffic over the VPN tunnel.

Client-server IP-only Networks

[71]

The second flag !ipv4, tells the OpenVPN client to not redirect IPv4 traffic. This was added
to this example to demonstrate that it is also possible to redirect IPv6 traffic only.

There's more…
It is possible to achieve the same behavior by adding the following lines to the server
configuration file:

push "route-ipv6 2000::/4"
push "route-ipv6 3000::/4"
push "route-ipv6 fc00::/4"

This is supported in OpenVPN 2.3 as well. However, there is a very important caveat to
this: if the IPv6 address of the server is in the same range as any of the preceding addresses,
then this setup will fail, as all of the traffic for the preceding IPv6 networks will be
redirected over the tunnel. To overcome this problem, the flag ipv6 was introduced in
OpenVPN 2.4.

Using an ifconfig-pool block
In this recipe, we will use an ifconfig-pool block to separate regular VPN clients from
administrative VPN clients. This makes it easier to set up different firewall rules for
administrative users.

Getting ready
This recipe uses the PKI files created in the first recipe of this chapter. Install OpenVPN
2.3.9 or higher on two computers. Make sure the computers are connected over a network.
For this recipe, the server computer was running CentOS 6 Linux and OpenVPN 2.3.9 and
the regular VPN client was running Windows 7 64 bit and OpenVPN 2.3.11 and was
assigned to the 192.168.200.0 network. The VPN client Admin was running Fedora 20
Linux and OpenVPN 2.3.9 and was on the 192.168.202.0 network. Keep the client
configuration file, basic-udp-client.conf, from the Server-side routing recipe at hand.

Client-server IP-only Networks

[72]

We use the following network layout:

How to do it…
Create the server configuration file:1.

 proto udp
 port 1194
 dev tun

 mode server
 ifconfig 192.168.200.1 255.255.255.0
 ifconfig-pool 192.168.200.100 192.168.200.120
 route 192.168.200.0 255.255.248.0 192.168.200.1
 push "route 192.168.200.1"
 push "route 192.168.200.0 255.255.248.0"

 ca /etc/openvpn/cookbook/ca.crt
 cert /etc/openvpn/cookbook/server.crt
 key /etc/openvpn/cookbook/server.key
 dh /etc/openvpn/cookbook/dh2048.pem
 tls-auth /etc/openvpn/cookbook/ta.key 0

 persist-key
 persist-tun
 keepalive 10 60

 topology subnet
 push "topology subnet"

 user nobody
 group nobody # use "group nogroup" on some distros

Client-server IP-only Networks

[73]

 daemon
 log-append /var/log/openvpn.log

 client-config-dir /etc/openvpn/cookbook/clients

Then save it as example2-9-server.conf.

Start the server:2.

 [root@server]# openvpn --config example2-9-server.conf

The administrative VPN client will be assigned a special IP address using a client-3.
configuration file:

 [root@server]# mkdir -m 755 /etc/openvpn/cookbook/clients
 [root@server]# cd /etc/openvpn/cookbook/clients
 [root@server]# echo "ifconfig-push 192.168.202.6
 192.168.202.6" \
 > client1

Note that the client VPN address is listed twice. This is not a typo; for more
details on this, refer to the previous recipe.

Note that the clients directory needs to be world-readable, as the OpenVPN4.
server process will run as user nobody after starting up.
Next, start the Linux client using the configuration file from the earlier recipe:5.

 [root@AdminClient]# openvpn --config basic-udp-client.conf
 [...]
 [openvpnserver] Peer Connection Initiated with
 openvpnserver:1194
 TUN/TAP device tun0 opened
 do_ifconfig, tt->ipv6=0, tt->did_ifconfig_ipv6_setup=0
 /usr/sbin/ip link set dev tun0 up mtu 1500
 /usr/sbin/ip addr add dev tun0 192.168.202.6/24 broadcast
 192.168.200.255
 Initialization Sequence Completed

The IP address that is assigned to the administrative client is highlighted for
clarity.

Create a configuration file for the Windows client:6.

 client
 proto udp
 remote openvpnserver.example.com
 port 1194

Client-server IP-only Networks

[74]

 dev tun
 nobind

 ca "c:/program files/openvpn/config/ca.crt"
 cert "c:/program files/openvpn/config/client2.crt"
 key "c:/program files/openvpn/config/client2.key"
 tls-auth "c:/program files/openvpn/config/ta.key" 1

 remote-cert-tls server

Then save it as basic-udp-client.ovpn.7.

Note the use of the forward slash (/), which is easier to use than the
backslash (\), as the backslash needs to be repeated twice each time.

Transfer the ca.crt, client2.crt, and client2.key files along with the tls-8.
auth secret key file, ta.key, to the Windows machine using a secure channel,
such as winscp or the PuTTY pscp command-line tool.
Start the Windows client using the OpenVPN GUI:9.

Remember that this client's private key file is protected using a password
or passphrase. After both the clients are connected, we verify that they can
ping each other and the server (assuming that no firewalls are blocking
access).

Client-server IP-only Networks

[75]

On the Admin Client:10.

 [AdminClient]$ ping 192.168.200.1
 [AdminClient]$ ping 192.168.200.102

And on the regular client:11.

 [WinClient]C:> ping 192.168.200.1
 [WinClient]C:> ping 192.168.202.6

How it works…
A server configuration file normally uses the following directive to configure a range of IP
addresses for the clients:

server 192.168.200.0 255.255.255.0

This directive is internally expanded to the following:

mode server
tls-server

ifconfig 192.168.200.1 192.168.200.2
ifconfig-pool 192.168.200.4 192.168.200.251
route 192.168.200.0 255.255.255.0
push "route 192.168.200.1"
if (topology==subnet) push "topology subnet"

So, by not using the server directive, but by specifying our own ifconfig-pool range,
we can override this behavior. We then use a CCD file to assign an IP address to the
administrative client, which falls outside of the ifconfig-pool range. By using the
appropriate route and push "route" statements, we ensure that all clients are able to
ping each other.

Note that we also need to explicitly push the topology in this case, as this is no longer done
automatically by the server directive.

Client-server IP-only Networks

[76]

There's more..
There are many details to consider when setting up the default configuration files.

Configuration files on Windows
The OpenVPN GUI application on Windows always starts in the directory:

C:\Program Files\OpenVPN\config

Or, C:\Program Files(x86)\... when using the 32-bit version of OpenVPN on 64-bit
versions of Windows. Thus, the directory paths in the basic-udp-client.ovpn
configuration file can be omitted:

ca ca.crt
cert client2.crt
key client2.key
tls-auth ta.key 1

Client-to-client access
With this setup, the VPN clients can connect to each other even though we did not make
use of the following directive in the server-side configuration:

client-to-client

This is possible due to the route and push "route" statements in the server configuration
file. The advantage of not using client-to-client is that it is still possible to filter out
unwanted traffic using iptables or another firewalling solution.

If there is no need for the administrative clients to connect to the regular VPN clients (or
vice versa), then the netmask can be adjusted to:

route 192.168.200.0 255.255.255.0
push "route 192.168.200.0 255.255.255.0"

Now, the networks are completely separated.

Client-server IP-only Networks

[77]

Using the TCP protocol
In this example, we chose the UDP protocol. The client configuration file in this recipe can
easily be converted to use TCP protocol by changing the line:

proto udp

Change it to the following:

proto tcp

Save this file as basic-tcp-client.ovpn for future use.

Using the status file
OpenVPN offers several options to monitor the clients connected to a server. The most
commonly used method is using a status file. This recipe will show how to use and read the
OpenVPN's status file.

Getting ready
The network layout used in this recipe is the same as in the Server-side routing recipe. This
recipe uses the PKI files created in the first recipe of this chapter. Install OpenVPN 2.3.9 or
higher on two computers. Make sure the computers are connected over a network. For this
recipe, the server computer was running CentOS 6 Linux and OpenVPN 2.3.9. The first
client was running Fedora 20 Linux and OpenVPN 2.3.9. The second client was running
Windows 7 64 bit and OpenVPN 2.3.11. For the Linux server, keep the server configuration
file basic-udp-server.conf from the Server-side routing recipe at hand. For the Linux
client, keep the client configuration file basic-udp-client.conf from the same recipe at
hand. For the Windows client, keep the corresponding client configuration file, basic-
udp-client.ovpn, from the previous recipe at hand.

How to do it…
Create the server configuration file by adding a line to the basic-udp-1.
server.conf file:

 status /var/log/openvpn.status

Client-server IP-only Networks

[78]

Save it as example2-10-server.conf.

Start the server:2.

 [root@server]# openvpn --config example2-10-server.conf

First, start the Linux client:3.

 [root@client1]# openvpn --config basic-udp-client.conf

After the VPN is established, list the contents of the openvpn.status file:4.

 [root@server]# cat /var/log/openvpn.status

A sample output is shown in the following screenshot:

–

Transfer the ca.crt, client2.crt, and client2.key files along with the tls-5.
auth secret key file, ta.key, to the Windows machine using a secure channel,
such as winscp or PuTTY's pscp command-line tool.
Start the Windows client on the command line:6.

 [WinClient2]C:> cd \program files\openvpn\config
 [WinClient2]C:> ..\bin\openvpn --config basic-udp-
 client.ovpn

Remember that this client's private key file is protected using a password or
passphrase.

List the contents of the status file again on the server:7.

 [root@server]# cat /var/log/openvpn.status

Client-server IP-only Networks

[79]

A sample output is shown in the following screenshot:

–

How it works…
Each time a client connects to the OpenVPN server, the status file is updated with the
connection information. The OpenVPN CLIENTLIST and ROUTING TABLE tables are
the most interesting ones, as they provide the following information:

Which clients are connected
From which IP address the clients are connecting
The number of bytes each client has received and transferred
The time at which the client connected

In addition, the routing table also shows which networks are routed to each client.

There's more…
There are three things to keep in mind when using status files:

Status parameters
The status directive takes two parameters:

The filename of the status file.
Optionally, the refresh frequency for updating the status file. The default value of
60 seconds should suffice for most situations.

Client-server IP-only Networks

[80]

Disconnecting clients
Note that when a client disconnects the status file, it is not updated immediately. OpenVPN
first tries to reconnect to the client based on the keepalive parameters in the server
configuration file. The server configuration file in this recipe uses:

keepalive 10 60

This tells the server that it will ping the client every 10 seconds. If it does not get a response
after 60 seconds * 2, the connection is restarted. The OpenVPN server will double the value
of the second argument. The server will also tell the client to ping every 10 seconds and to
restart the connection after 60 seconds if it does not get any response.

Explicit-exit-notify
One of the lesser-known options of OpenVPN is the following directive:

explicit-exit-notify [N]

This can be set on the client side so that when the client disconnects, it will send an explicit
OCC_EXIT message to the server (if at all possible). This will speed up the removal of
disconnected clients. The optional parameter N indicates the number of times the message
will be sent. By default, only a single OCC_EXIT message is sent, which can cause problems
as the UDP protocol does not guarantee the delivery of packets.

The management interface
This recipe shows how an OpenVPN client is managed using the management interface
from the server side.

Getting ready
The network layout used in this recipe is the same as in the Server-side routing recipe. This
recipe uses the PKI files created in the first recipe of this chapter. For this recipe, the server
computer was running CentOS 6 Linux and OpenVPN 2.3.9. The client was running
Windows 7 64 bit and OpenVPN 2.3.10. For the server, keep the server configuration
file, basic-udp-server.conf, from the Server-side routing recipe at hand. For the
Windows client, keep the corresponding client configuration file, basic-udp-
client.ovpn, from the previous recipe at hand.

Client-server IP-only Networks

[81]

How to do it…
Start the server using the default server configuration file:1.

 [root@server]# openvpn --config basic-udp-server.conf

Create a configuration file for the Windows client by adding a line to the basic-2.
udp-client.ovpn file:

 management tunnel 23000 stdin

Save it as example2-11.ovpn.

Transfer the ca.crt, client2.crt, and client2.key files along with the tls-3.
auth secret key file, ta.key, to the Windows machine using a secure channel,
such as winscp or the PuTTY pscp command-line tool.
The OpenVPN GUI does not support this particular configuration of the4.
management interface. Therefore, we start the Windows client on the command
line:

 [WinClient]C:> cd \program files\openvpn\config
 [WinClient]C:> ..\bin\openvpn --config example2-11.ovpn

The OpenVPN client will now ask for a password for the management
interface. Pick a good password. After that, it will ask for the private key
passphrase.

After the VPN is established, we can connect from the server to the management5.
interface of the OpenVPN client using the telnet program on the server:

 [server]$ telnet 10.200.0.3 23000
 Trying 10.200.0.3...
 Connected to 10.200.0.3.
 Escape character is '^]'.
 ENTER PASSWORD:
 SUCCESS: password is correct
 >INFO:OpenVPN Management Interface Version 1 -- type 'help'
 for more info
 status
 OpenVPN STATISTICS
 Updated,Fri Feb 5 18:22:31 2016
 TUN/TAP read bytes,21849
 TUN/TAP write bytes,451
 TCP/UDP read bytes,6571
 TCP/UDP write bytes,30172

Client-server IP-only Networks

[82]

 Auth read bytes,707
 TAP-WIN32 driver status,"(null)"
 END
 signal SIGTERM

Use Ctrl +] or quit to exit the telnet program.6.

How it works…
When the OpenVPN client connects to the server, a special management interface is set up
using the directive:

management tunnel 23000 stdin

It has the following parameters:

The tunnel parameter to bind the management interface to the VPN tunnel
itself. This is useful for testing purposes and some advanced client setups. On the
server side, it is best to always specify 127.0.0.1 for the management IP.
The port 23000 on which the management interface will be listening.
The last parameter is the password file or the special keyword stdin to indicate
that the management interface password will be specified when OpenVPN starts
up. Note that this password is completely unrelated to the private key
passphrases or any other user management passwords that OpenVPN uses.

After the management interface comes up, the server operator can connect to it using telnet
and can query the client. The client can type the following:

signal SIGTERM

This effectively shuts itself down as if the user has stopped it! This shows how important it
is to protect the management interface and its password.

There's more…
The management interface can also be run on the OpenVPN server itself. In that case, it is
possible to list the connected clients, disconnect them, or perform a variety of other
OpenVPN administrative tasks.

Client-server IP-only Networks

[83]

It is expected that the management interface will become more important in future versions
of OpenVPN, both on the client and the server side, as the preferred method for
programmatically interacting with the OpenVPN software.

See Also
The Management interface recipe in Chapter 3, Client-server Ethernet-style Networks,
explains the use of the server-side management interface in more detail

Proxy ARP
In this recipe, we will use the proxy-arp feature of the Linux kernel to make the VPN
clients appear as part of the server-side LAN. This eliminates the need to use bridging,
which is desirable in most cases.

Getting ready
This recipe uses the PKI files created in the first recipe of this chapter. For this recipe, the
server computer was running CentOS 6 Linux and OpenVPN 2.3.9. The client was running
Windows 7 64 bit and OpenVPN 2.3.10. For the server, keep the server configuration
file, basic-udp-server.conf, from the Server-side routing recipe at hand. For the
Windows client, keep the corresponding client configuration file, basic-udp-
client.ovpn, from the Using an ifconfig-pool block recipe at hand.

We use the following network layout:

Client-server IP-only Networks

[84]

How to do it…
Create the server config file by adding the following lines to the basic-udp-1.
server.conf file:

 script-security 2
 client-connect /etc/openvpn/cookbook/proxyarp-connect.sh
 client-disconnect /etc/openvpn/cookbook/proxyarp-disconnect.sh

Save it as example2-12-server.conf.

Create the proxyarp-connect.sh script:2.

 #!/bin/bash
 /sbin/arp -i eth0 -Ds $ifconfig_pool_remote_ip eth0 pub

Then create the proxyarp-disconnect.sh script:

 #!/bin/bash
 /sbin/arp -i eth0 -d $ifconfig_pool_remote_ip

Make sure that both the scripts are executable:3.

 [root@server]# cd /etc/openvpn/cookbook
 [root@server]# chmod 755 proxyarp-connect.sh
 [root@server]# chmod 755 proxyarp-disconnect.sh

Start the server:4.

 [root@server]# openvpn --config example2-12-server.conf

Then, start the Windows client using the OpenVPN GUI:5.

Client-server IP-only Networks

[85]

After a client has successfully connected, the arp table on the OpenVPN server will have a
new entry:

10.198.1.130 * * MP eth0

From a machine on the server-side LAN, we can now ping the VPN client:

 [siteBclient]C:> ping 10.198.1.130

Note that no special routing is required on Site B's LAN. The VPN client truly appears as
being on the LAN itself.

How it works…
The proxy-arp feature is supported by most UNIX and Linux kernels. It is used most often
for connecting dial-in clients to a LAN, and nowadays, also by ADSL and cable Internet
providers. When the OpenVPN client connects, an IP address is borrowed from Site B's
LAN range. This IP address is assigned to the OpenVPN client. At the same time, a special
ARP entry is made on the OpenVPN server to tell the rest of the network that the OpenVPN
server acts as a proxy for 10.198.1.130. This means that when another machine on Site B's
LAN wants to know where to find the host with 10.198.1.130, then the OpenVPN server
will respond (with its own MAC address).

There's more…
A proxy-arp setup has its own set of applications as well as challenges. Some of them are
listed here:

TAP-style networks
The proxy-arp feature can also be used in a TAP-style network. In combination with an
external DHCP server, it provides almost the same functionality as that of an Ethernet
bridging solution without the drawbacks of Ethernet bridging itself.

User nobody
Note that in this example we did not use:

user nobody
group nobody

Client-server IP-only Networks

[86]

We did this because it would have prevented the proxyarp-* scripts from working. In
order to execute the /sbin/arp command, root privileges are required. Therefore, it is not
possible to switch to user nobody after the OpenVPN server has started. Alternatively, one
can configure sudo access to the /sbin/arp command to circumvent this.

Broadcast traffic might not always work
Sending broadcast traffic over a network where proxy-arp is used is tricky. For most
purposes (for example, Windows Network Neighborhood browsing), proxy-arp will
work. For some applications that require all the clients to be a member of a full broadcast
domain, using proxy-arp might not suffice. In that case, Ethernet bridging is a better
solution.

See also
The Checking broadcast and non-IP traffic recipe from Chapter 3, Client-server
Ethernet-style Networks

3
Client-server Ethernet-style

Networks
 In this chapter, we will cover the following topics:

Simple configuration – non-bridged
Enabling client-to-client traffic
Bridging – Linux
Bridging – Windows
Checking broadcast and non-IP traffic
An external DHCP
Using the status file
The management interface
Integrating IPv6 into TAP-style networks

Introduction
The recipes in this chapter will cover the deployment model of a single server with multiple
remote clients capable of forwarding Ethernet traffic.

We will look at several common configurations, including bridging, the use of an external
DHCP server, and also the use of the OpenVPN status file. Please note that bridging should
only be used as a last resort. Most of the functionality provided by bridging can be achieved
through other methods. Moreover, there are many disadvantages to using bridging,
especially in terms of performance and security.

Client-server Ethernet-style Networks

[88]

Simple configuration – non-bridged
This recipe will demonstrate how to set up a TAP-based connection in client or server mode
using certificates. It also uses masquerading to allow the OpenVPN clients to reach all the
machines behind the OpenVPN server. The advantage of masquerading is that with it, no
special routes are needed on the server LAN. Masquerading for OpenVPN servers is
available only on the Linux and UNIX variants. This recipe is similar to the Server-side
routing recipe from the previous chapter.

Getting ready
Set up the client and server certificates using the first recipe from Chapter 2, Client-server
IP-only Networks. For this recipe, both the server computer and the client computer were
running CentOS 6 Linux and OpenVPN 2.3.10.

We use the following network layout:

How to do it…
Create the server configuration file:1.

 tls-server
 proto udp
 port 1194
 dev tap

 server 192.168.99.0 255.255.255.0

 tls-auth /etc/openvpn/cookbook/ta.key 0
 ca /etc/openvpn/cookbook/ca.crt
 cert /etc/openvpn/cookbook/server.crt
 key /etc/openvpn/cookbook/server.key
 dh /etc/openvpn/cookbook/dh2048.pem

Client-server Ethernet-style Networks

[89]

 persist-key
 persist-tun
 keepalive 10 60

 push "route 10.198.0.0 255.255.0.0"

 user nobody
 group nobody # use "group nogroup" on some distros

 daemon
 log-append /var/log/openvpn.log

Save it as example-3-1-server.conf. Note that on some Linux
distributions, the group nogroup is used instead of nobody.

Start the server:2.

 [root@server]# openvpn --config example3-1-server.conf

Set up IP forwarding and an iptables masquerading rule:3.

 [root@server]# sysctl -w net.ipv4.ip_forward=1
 [root@server]# iptables -t nat -I POSTROUTING -i tap+ -o eth0 \
 -s 192.168.99.0/24 -j MASQUERADE

Next, create the client configuration file:4.

 client
 proto udp
 remote openvpnserver.example.com
 port 1194
 dev tap
 nobind

 remote-cert-tls server
 tls-auth /etc/openvpn/cookbook/ta.key 1
 ca /etc/openvpn/cookbook/ca.crt
 cert /etc/openvpn/cookbook/client1.crt
 key /etc/openvpn/cookbook/client1.key

Save it as example-3-1-client.conf.

Start the client:5.

 [root@client]# openvpn --config example3-1-client.conf

Client-server Ethernet-style Networks

[90]

The output generated is shown as follows:

After the connection is established, we can verify that it is working. First, we ping6.
the server:

 [client]$ ping -c 2 192.168.99.1
 PING 192.168.99.1 (192.168.99.1) 56(84) bytes of data.
 64 bytes from 192.168.99.1: icmp_seq=1 ttl=64 time=25.3 ms
 64 bytes from 192.168.99.1: icmp_seq=2 ttl=64 time=25.2 ms

Second, we ping a host on the server-side LAN:

 [client]$ ping -c 2 10.198.0.1
 PING 10.198.0.1 (10.198.0.1) 56(84) bytes of data.
 64 bytes from 10.198.0.1: icmp_seq=1 ttl=63 time=29.2 ms
 64 bytes from 10.198.0.1: icmp_seq=2 ttl=63 time=25.3 ms

How it works…
When the server starts, it configures the first available TAP interface with the IP address
192.168.99.1. After that, the server listens on the UDP port 1194 for incoming
connections, which serves as an OpenVPN default.

The client connects to the server on this port. After the initial TLS handshake using both the
client and server certificates, the client is assigned the IP address 192.168.99.2. The client
configures its first available TAP interface using this information; after this, the VPN is
established.

Client-server Ethernet-style Networks

[91]

Apart from the OpenVPN configuration, this recipe also uses an iptables command to
enable the client to reach Site B's LAN without having to set up additional routes on Site B's
LAN gateway. The following command instructs the Linux kernel to rewrite all of the traffic
coming from the subnet 192.168.99.0/24 (which is our OpenVPN subnet) and that is
leaving the Ethernet interface eth0:

 [root@server]# iptables -t nat -I POSTROUTING -i tap+ -o eth0 \
 -s 192.168.99.0/24 -j MASQUERADE

Each of these packets has its source address rewritten so that it appears as if it is coming
from the OpenVPN server itself instead of coming from the OpenVPN client. The
iptables module keeps track of these rewritten packets so that when a return packet is
received, the reverse is done and the packets are forwarded back to the OpenVPN client
again. This is an easy method to enable routing to work, but there is a drawback when
many clients are used: it would not be possible to distinguish traffic on Site B's LAN if it is
coming from the OpenVPN server itself, from client1via the VPN tunnel or from clientN via
the VPN tunnel.

There's more…
There are a few things to keep in mind when setting up a TAP-style network.

Differences between TUN and TAP
The differences between this setup and the Server-side routing recipe of the previous chapter
are minimal. There are a few subtle differences, however, which can lead to unforeseen
effects if you are not aware of them:

When using a TAP adapter, the full Ethernet frame is encapsulated. This causes a
slightly larger overhead.
All the machines that are connected to a TAP-style network form a single
broadcast domain. The effects of this will become clearer in the next recipe.
If bridging is needed, a TAP-style tunnel is required.

Using the TCP protocol
In this example, we chose the UDP protocol. The configuration files in this recipe can be
easily converted to use the TCP protocol by changing the following line:

proto udp

Client-server Ethernet-style Networks

[92]

Change this to:

proto tcp

Do this in both the client and server configuration files.

The UDP protocol normally gives optimal performance, but some routers and firewalls
have problems forwarding UDP traffic. In such cases, the TCP protocol often does work.

Making IP forwarding permanent
On most Linux systems, the proper way to permanently set up IP forwarding is as follows:

Add the following line to the /etc/sysctl.con file:

 net.ipv4.ip_forward=1

Reload the sysctl.conf file using:

 [root@server]# sysctl -p

See also
The Server-side routing recipe from Chapter 2, Client-server IP-only Networks, in
which a basic TUN-style setup is explained

Enabling client-to-client traffic
This recipe is a continuation of the previous recipe. It will demonstrate how to set up a
TAP-based connection in client or server mode using certificates. Using the client-to-
client directive, it will also enable different OpenVPN clients to contact each other. For
TAP-based networks, this leads to some important side effects.

Client-server Ethernet-style Networks

[93]

Getting ready
We use the following network layout:

Set up the client and server certificates using the first recipe from Chapter 2, Client-server
IP-only Networks.

For this recipe, the server was running CentOS 6 Linux and OpenVPN 2.3.10; both clients
were running Windows 7 64 bit and OpenVPN 2.3.10. For the server, keep the configuration
file example3-1-server.conf from the previous recipe at hand.

How to do it…
Create the server configuration file by adding a line to the example3-1-1.
server.conf file:

 client-to-client

Save it as example-3-2-server.conf.

Start the server:2.

 [root@server]# openvpn --config example3-2-server.conf

Set up IP forwarding and an iptables masquerading rule:3.

 [root@server]# sysctl -w net.ipv4.ip_forward=1
 [root@server]# iptables -t nat -I POSTROUTING -i tap+ -o eth0 \
 -s 192.168.99.0/24 -j MASQUERADE

Client-server Ethernet-style Networks

[94]

Next, create the client configuration file for the first client:4.

 client
 proto udp
 remote openvpnserver.example.com
 port 1194

 dev tap
 nobind

 remote-cert-tls server
 tls-auth "c:/program files/openvpn/config/ta.key" 1
 ca "c:/program files/openvpn/config/ca.crt"
 cert "c:/program files/openvpn/config/client1.crt"
 key "c:/program files/openvpn/config/client1.key"

 verb 5

Save it as example-3-2-client1.ovpn.

Similarly, for the second client, create the configuration file:5.

 client
 proto udp
 remote openvpnserver.example.com
 port 1194

 dev tap
 nobind

 remote-cert-tls server
 tls-auth "c:/program files/openvpn/config/ta.key" 1
 ca "c:/program files/openvpn/config/ca.crt"
 cert "c:/program files/openvpn/config/client2.crt"
 key "c:/program files/openvpn/config/client2.key"

 verb 5

Save it as example-3-2-client2.ovpn.

Start the Windows clients, one from the command line:6.

 [WinClient1]C:> cd \program files\openvpn\config
 [WinClient1]C:> ..\bin\openvpn --config example3-2-
 client1.ovpn

Start Client2 using the OpenVPN GUI:

Client-server Ethernet-style Networks

[95]

As the private key file client2.key is protected using a passphrase, we will
be prompted for it:

After the connection is established, the GUI window will disappear and a balloon7.
will pop up:

Client-server Ethernet-style Networks

[96]

We can now verify that the VPN connection is working by doing this. First,
ping the server:

 [WinClient1]C:> ping 192.168.99.1
 Pinging 192.168.99.1 with 32 bytes of data:
 Reply from 192.168.99.1: bytes=32 time=24ms TTL=64
 Reply from 192.168.99.1: bytes=32 time=25ms TTL=64

Then, ping the second client:

 [WinClient1]C:> ping 192.168.99.3
 Pinging 192.168.99.3 with 32 bytes of data:
 Reply from 192.168.99.3: bytes=32 time=49ms TTL=128
 Reply from 192.168.99.3: bytes=32 time=50ms TTL=128

Notice the higher round-trip time.

Finally, verify that we can still ping a host on the server-side LAN:8.

 [WinClient1]C:\> ping -c 2 10.198.0.9
 Pinging 10.198.0.9 with 32 bytes of data:
 Reply from 10.198.0.9: bytes=32 time=25ms TTL=63
 Reply from 10.198.0.9: bytes=32 time=25ms TTL=63

How it works…
Both clients connect to the OpenVPN server in the regular manner. The following directive
is all that is needed for the clients to see each other:

client-to-client

Communication between the clients will still pass through the OpenVPN server, which
explains the higher round-trip time for the ICMP packets. The flow of an ICMP (ping) echo
and reply is as follows:

The OpenVPN client encrypts the packet and forwards it to the server over a1.
secure link.
The server decrypts the packet and determines that the packet needs to be2.
forwarded to another OpenVPN client. Therefore, the packet is not forwarded to
the kernel-routing modules, but is encrypted again and is forwarded to the
second client.
The second client receives the packet, decrypts it, and sends a reply back to the3.
server over the secure link.

Client-server Ethernet-style Networks

[97]

The server decrypts the reply packet and determines that the packet needs to be4.
forwarded to the first client. Therefore, the packet is not forwarded to the kernel-
routing modules but is encrypted again and is forwarded to the original client.

There's more…
As always, there are some caveats to watch out for.

Broadcast traffic may affect scalability
All machines that are connected to a TAP-style network form a single broadcast domain.
When client-to-client is enabled, this means that all of the broadcast traffic from all
the clients is forwarded to all other clients. Wireshark running on client2 indeed shows a
lot of broadcast packets from client1, all of which passed through the OpenVPN server.
This can lead to a scalability problem when a large number of clients are connected.

Filtering traffic
In the current version of OpenVPN, it is not possible to filter the traffic between VPN clients
when the client-to-client directive is used. OpenVPN does have the capability for a
filtering plugin, but this plugin is not maintained and requires extensive configuration.

A second method of filtering traffic between clients is to use the system's routing tables, in
combination with a Linux kernel flag, proxy_arp_pvlan. This flag is available in modern
Linux kernels (2.6.34+ or kernels with back-ported options). This flag instructs the Linux
kernel to resend the ARP request back out of the same interface from where it came. It is
exactly this flag that is needed for client-to-client traffic to work without using the client-
to-client directive. Thus, in order to filter traffic, we first enable client-to-client traffic in
tap mode by setting this flag:

echo 1 > /proc/sys/net/ipv4/conf/tap0/proxy_arp_pvlan

We can then use iptables command to filter traffic between clients.

TUN-style networks
The client-to-client directive can also be used in TUN-style networks. It works in
exactly the same manner as in this recipe, except that the OpenVPN clients do not form a
single broadcast domain.

Client-server Ethernet-style Networks

[98]

Bridging – Linux
This recipe will demonstrate how to set up a bridged OpenVPN server. In this mode, the
local network and the VPN network are bridged, which means that all of the traffic from
one network is forwarded to the other and vice versa.

This setup is often used to securely connect remote clients to a Windows-based LAN, but it
is quite hard to get it right. In almost all cases, it suffices to use a TUN-style network with a
local WINS server on the OpenVPN server itself. A bridged VPN does have its advantages,
as will become apparent in the next few recipes.

However, there are also disadvantages to using bridging, especially in terms of
performance: the performance of a bridged 100 Mbps Ethernet adapter is about half the
performance of a non-bridged adapter.

Getting ready
We use the following network layout:

Set up the client and server certificates using the first recipe from Chapter 2, Client-server
IP-only networks. For this recipe, the server was running CentOS 6 Linux and OpenVPN
2.3.10. The client computer was running Windows 7 64 bit and OpenVPN 2.3.10. For the
client, keep the client configuration file example3-2-client2.ovpn at hand.

How to do it…
Create the server configuration file:1.

 proto udp
 port 1194
 dev tap0 ## the '0' is extremely important
 server-bridge 192.168.4.65 255.255.255.0 192.168.4.128
 192.168.4.200

Client-server Ethernet-style Networks

[99]

 push "route 192.168.4.0 255.255.255.0"
 tls-auth /etc/openvpn/cookbook/ta.key 0
 ca /etc/openvpn/cookbook/ca.crt
 cert /etc/openvpn/cookbook/server.crt
 key /etc/openvpn/cookbook/server.key
 dh /etc/openvpn/cookbook/dh2048.pem
 persist-key
 persist-tun
 keepalive 10 60
 user nobody
 group nobody # use "group nogroup" on some distros
 daemon
 log-append /var/log/openvpn.log

Save it as example-3-3-server.conf.

Next, create a script to start the network bridge:2.

 #!/bin/bash

 br="br0"
 tap="tap0"

 eth="eth0"
 eth_ip="192.168.4.65"
 eth_netmask="255.255.255.0"
 eth_broadcast="192.168.4.255"

 openvpn --mktun --dev $tap

 brctl addbr $br
 brctl addif $br $eth
 brctl addif $br $tap
 ifconfig $tap 0.0.0.0 promisc up
 ifconfig $eth 0.0.0.0 promisc up
 ifconfig $br $eth_ip netmask $eth_netmask \
 broadcast $eth_broadcast

Save this script as example3-3-bridge-start file.

Similarly, use a script to stop the Ethernet bridge:3.

 #!/bin/bash

 br="br0"
 tap="tap0"

 ifconfig $br down

Client-server Ethernet-style Networks

[100]

 brctl delbr $br
 openvpn --rmtun --dev $tap

Save this script as example3-3-bridge-stop file. These scripts are based
on the bridge-start and bridge-stop examples, which are part of the
OpenVPN distribution.

Create the network bridge and verify that it is working:4.

 [root@server]# bash example3-3-bridge-start
 TUN/TAP device tap0 opened
 Persist state set to: ON
 [root@server]# brctl show
 bridge name bridge id STP enabled interfaces
 br0 8000.00219bd2d422 no eth0
 tap0

Start the OpenVPN server:5.

 [root@server]# openvpn --config example3-3-server.conf

Start the client:6.

Check the assigned VPN address:7.

 [WinClient]C:> ipconfig /all
 [...]
 Ethernet adapter tun0:
 Connection-specific DNS Suffix . :
 Description : TAP-Win32 Adapter V9
 Physical Address. : 00-FF-17-82-55-DB
 Dhcp Enabled. : Yes
 Autoconfiguration Enabled : Yes
 IP Address. : 192.168.4.128

Client-server Ethernet-style Networks

[101]

 Subnet Mask : 255.255.255.0
 Default Gateway :
 DHCP Server : 192.168.4.0

Now, verify that we can ping a machine on the remote server LAN:8.

 [WinClient]C:> ping 192.168.4.164
 Pinging 192.168.4.164 with 32 bytes of data:
 Reply from 192.168.4.164: bytes=32 time=3ms TTL=64
 Reply from 192.168.4.164: bytes=32 time=1ms TTL=64
 Reply from 192.168.4.164: bytes=32 time=1ms TTL=64
 Reply from 192.168.4.164: bytes=32 time<1ms TTL=64

Remember to tear down the network bridge after stopping the OpenVPN server:9.

 [root@server]# bash example3-3-bridge-stop
 TUN/TAP device tap0 opened
 Persist state set to: OFF

How it works…
The bridge-start script forges a bond between two network adapters: on the one side,
the LAN adapter eth0, and on the other side, the VPN adapter tap0. The main property of
a network bridge is that all of the traffic is copied from one side to the other and vice versa.
This allows us to set up a VPN where the client almost truly becomes a part of the server-
side LAN.

The downside of a bridged network is the increased overhead and the performance penalty
on the OpenVPN server itself: if there is a lot of broadcast traffic from many clients on either
side, the bridge can become overloaded.

There's more…

Fixed addresses and the default gateway
In this recipe, the OpenVPN server is assigned a fixed address on the server LAN, as is
done most often for a bridged interface. The difficulty with assigning a dynamic address to
a network bridge is that it is not clear from which network the dynamic address should be
chosen. This also enables us to specify a fixed server-bridge address in the server
configuration file.

Client-server Ethernet-style Networks

[102]

When using bridges, it is also important to check that the default route is available after the
bridge is started. In most setups, eth0 is assigned a dynamic address, including a default
gateway. When the bridge-start script is executed, br0 is assigned a fixed address, but
as a side effect, the default gateway is often lost.

Name resolution
One of the difficulties in setting up a bridged network in the proper fashion is related to
name resolution. OpenVPN only does Ethernet (Layer2) or IP-based routing. Setting up a
proper name resolution system (for example, a Domain Controller and/or a WINS server in
a Windows network) can be tricky in a bridged environment as well.

See also
The next recipe in this chapter, in which bridging on a Windows server is
explained

Bridging- Windows
This recipe will demonstrate how to set up a bridged OpenVPN server on Windows.
Bridging on Windows is slightly different from Linux or UNIX, but the concept is the same.

This recipe is very similar to the previous recipe, apart from the different methods used to
set up bridging.

Getting ready
Set up the client and server certificates using the first recipe from Chapter 2, Client-server
IP-only networks.

For this recipe, the server computer was running Windows 7 64 bit and OpenVPN 2.3.10.
The client computer was running Fedora 20 Linux and OpenVPN 2.3.10. For the Linux
client, keep the client configuration file example3-1-client.conf at hand.

Client-server Ethernet-style Networks

[103]

We use the following network layout:

How to do it…
Create the server configuration file:1.

 proto udp
 port 1194
 dev tap
 dev-node tapbridge

 server-bridge 192.168.3.15 255.255.255.0 192.168.3.128
 192.168.3.250

 dh "c:/program files/openvpn/config/dh2048.pem"
 tls-auth "c:/program files/openvpn/config/ta.key" 0
 ca "c:/program files/openvpn/config/ca.crt"
 cert "c:/program files/openvpn/config/server.crt"
 key "c:/program files/openvpn/config/server.key"

 push "route 192.168.3.0 255.255.255.0"

 persist-key
 persist-tun
 keepalive 10 60

Save it as example-3-4-server.conf.

Next, create the network bridge:2.
Go to Network and Sharing Center and Change adapter settings.
 Rename the TAP-Win adapter as tapbridge by right-clicking on it
and selecting Rename. On the test computer used, the Ethernet adapter
connected to the LAN was renamed to eth0.

Client-server Ethernet-style Networks

[104]

Select the two adapters that need to be bridged by pressing the Ctrl key
and clicking on each adapter, then right-clicking and selecting Bridge
Connections:

This will create a new bridge adapter icon in the control panel, usually
named Network Bridge (…).

The network bridge is now ready to be configured:3.

Client-server Ethernet-style Networks

[105]

In a command window, verify that the bridge is configured correctly:4.

 [winserver]C:> netsh interface ip show address "Network
 Bridge"
 Configuration for interface "Network Bridge"
 DHCP enabled: No
 IP Address: 192.168.3.15
 SubnetMask: 255.255.255.0
 Default Gateway: 192.168.3.1
 GatewayMetric: 5
 InterfaceMetric: 0

Start the OpenVPN server:5.

 [winserver]C:> cd \program files\openvpn\config
 [winserver]C:> ..\bin\openvpn --config example3-4-server.ovpn

The Windows firewall will pop up a security warning. Allow OpenVPN access to6.
the VPN:

Start the client:7.

 [root@client]# openvpn --config example3-1-client.conf

Client-server Ethernet-style Networks

[106]

Now, check the assigned VPN address and verify that we can ping a machine on8.
the remote server LAN:

 [client]$ /sbin/ifconfig tap1
 tap1 Link encap:Ethernet HWaddr A2:F4:E2:41:05:BF
 inet addr:192.168.3.128 Bcast:192.168.3.255
 Mask:255.255.255.0
 [...]
 [client]$ ping -c 2 192.168.3.1
 PING 192.168.3.1 (192.168.3.1) 56(84) bytes of data.
 64 bytes from 192.168.3.1: icmp_seq=1 ttl=128 time=24.0 ms
 64 bytes from 192.168.3.1: icmp_seq=2 ttl=128 time=26.0 ms

How it works…
Apart from the way the bridge is created and configured, this recipe is very similar to the
previous one. The one thing to keep in mind is how the adapter is selected in the server
configuration file:

dev tap
dev-node tapbridge

On Linux and other UNIX variants, this could be achieved using a single line:

dev tap0

But the naming scheme for the TAP adapters on Windows is different. To overcome this,
the dev-node directive needs to be added.

See also
The previous recipe, where bridging on Linux is explained

Checking broadcast and non-IP traffic
The main reason for a bridged setup is to create a single broadcast domain for all the clients
connected, both via the VPN and via a regular network connection.

Another reason is the ability to route or forward non-IP based traffic, such as the older
Novell IPX and Appletalk protocols.

Client-server Ethernet-style Networks

[107]

This recipe focuses on the use of tools such as tcpdump and wireshark to detect whether
the broadcast domain is functioning and if non-IP traffic is flowing in the correct manner.

Getting ready
For this recipe, we use the setup from the Bridging – Linux recipe of this chapter. We use the
following network layout:

For this recipe, the server computer was running CentOS 6 Linux and OpenVPN 2.3.9. For
the server, keep the server configuration file example3-3-server.conf from the Bridging
– Linux recipe ready. The first client computer was running Windows 7 64 bit and
OpenVPN 2.3.10 and was in the same LAN segment as the OpenVPN server. The second
client was running Windows XP and OpenVPN 2.1.1. For this client, keep the client
configuration file example3-2-client2.ovpn from the Enabling client-to-client traffic
recipe at hand.

Make sure that the AppleTalk and IPX protocols are installed on both the Windows
machines. Bind the protocols to the Local Area Network adapters (this is the default
setting).

How to do it…
Create the network bridge and verify that it is working:1.

 [root@server]# bash example3-3-bridge-start
 TUN/TAP device tap0 opened
 Persist state set to: ON
 [root@server]# brctl show
 bridge name bridge id STP enabled interfaces
 br0 8000.00219bd2d422 no eth0
 tap0

Client-server Ethernet-style Networks

[108]

Start the OpenVPN server:2.

 [root@server]# openvpn --config example3-3-server.conf

Start the OpenVPN clients:3.

 [WinClient1]C:> cd \program files\openvpn\config
 [WinClient1]C:> ..\bin\openvpn --config example3-2-
 client2.ovpn

Start Client 2 using the OpenVPN GUI:

In this recipe, the Windows 7 client was assigned 192.168.4.64. The
Windows XP client was assigned 192.168.4.128.

After the client has successfully connected, we first check for ARP messages. On4.
the server, run the tcpdump command and listen for traffic on the bridge
interface br0:

Client-server Ethernet-style Networks

[109]

In this output, 192.168.4.254 is the address of the server-side gateway. So
the gateway is asking for ARP information and the ARP replies are coming
from both the OpenVPN server and the OpenVPN client itself. This can only
happen if the ARP request is forwarded over the bridge to the OpenVPN
client.

Next, on the Windows 7 client, check for the broadcast traffic coming from the 5.
Windows XP client. For this, we use Wireshark. Wireshark is available for both
Linux and Windows. Configure it to capture all of the traffic from the Ethernet
adapter. Here's an example of it:

In this output, we see a lot of Netbios broadcast traffic when the OpenVPN
client first connects to the network.

Client-server Ethernet-style Networks

[110]

As a final example, we look for IPX traffic:6.

This shows that non-IP traffic is also forwarded over the bridge.

How it works…
All of the traffic that is forwarded over the bridge is intercepted by programs such as
Wireshark. By filtering for certain types of traffic, it is easy to show that in a bridged setup,
traffic from the OpenVPN clients is indeed flowing over the server-side LAN. This is very
important when troubleshooting an almost-working setup.

An external DHCP server
In this recipe, we will configure a bridged OpenVPN server so that it uses an external
DHCP server to assign addresses to the OpenVPN clients to further increase the integration
of remote clients with the clients already present on the server-side LAN.

Client-server Ethernet-style Networks

[111]

Getting ready
We use the following network layout:

Set up the client and server certificates using the first recipe from Chapter 2, Client-server
IP-only Networks. For this recipe, the server computer was running CentOS 6 Linux and
OpenVPN 2.3.10. The client was running Windows 7 64 bit and OpenVPN 2.3.10. For this
client, keep the client configuration file example3-2-client2.ovpn from the Enabling
client-to-client traffic recipe at hand.

How to do it…
Create the server configuration file:1.

 proto udp
 port 1194
 dev tap0

 server-bridge
 push "route 0.0.0.0 255.255.255.255 net_gateway"

 tls-auth /etc/openvpn/cookbook/ta.key 0
 ca /etc/openvpn/cookbook/ca.crt
 cert /etc/openvpn/cookbook/server.crt
 key /etc/openvpn/cookbook/server.key
 dh /etc/openvpn/cookbook/dh2048.pem

 persist-key
 persist-tun
 keepalive 10 60

 user nobody
 group nobody # use "group nogroup" on some distros

Client-server Ethernet-style Networks

[112]

 daemon
 log-append /var/log/openvpn.log

Save it as example3-6-server.conf.2.
Start the server:3.

 [root@server]# openvpn --config example3-6-server.conf

Start the Windows client:4.

After the VPN connection is established, verify the IP address and the routing5.
tables:

 [WinClient]C:> ipconfig /all
 [...]
 Ethernet adapter tapwin32-0
 Connection-specific DNS Suffix . : lan
 Description : TAP-Win32 Adapter V9
 Physical Address. : 00-FF-17-82-55-DB
 Dhcp Enabled. : Yes
 Autoconfiguration Enabled : Yes
 IP Address. : 192.168.4.66
 Subnet Mask : 255.255.255.0
 Default Gateway : 192.168.4.254
 DHCP Server : 192.168.4.254
 DNS Servers : 192.168.4.254
 [...]
 [WinClient]C:> netstat -rn
 [...]
 0.0.0.0 0.0.0.0 192.168.3.1 192.168.3.22 10
 0.0.0.0 255.255.255.255 192.168.3.1 192.168.3.22 1
 0.0.0.0 0.0.0.0 192.168.4.254 192.168.4.66 1
 Default Gateway: 192.168.3.1
 [...]

Client-server Ethernet-style Networks

[113]

And finally, check that we can reach other hosts in the server-side LAN:6.

 [WinClient]C:> ping 192.168.4.64
 Pinging 192.168.4.64 with 32 bytes of data:
 Reply from 192.168.4.64: bytes=32 time=3ms TTL=64
 Reply from 192.168.4.64: bytes=32 time=1ms TTL=64
 Reply from 192.168.4.64: bytes=32 time=1ms TTL=64
 Reply from 192.168.4.64: bytes=32 time<1ms TTL=64

How it works…
Here is the server directive:

server-bridge

Without any parameters, this directive instructs OpenVPN to not allocate a pool of IP
addresses for the clients. So, all of the incoming DHCP requests from the clients are
forwarded out over the bridge. The DHCP server on the server-side LAN then replies with
an IP address.

The tricky part here is that the DHCP server almost always also returns a default gateway,
which will be the LAN gateway. If a remote client sets its default gateway to the gateway of
the LAN, funny things will happen, as in most cases the direct route to the OpenVPN server
will be lost.

The following directive instructs the OpenVPN client to add an explicit default route via the
net_gateway, which is always the LAN gateway at the client side:

push "route 0.0.0.0 255.255.255.255 net_gateway"

For Windows clients, this trick works and the default gateway remains intact.

For Linux clients, it is easier to tweak the dhclient and network-scripts settings.
However, this is distribution-dependent.

With the default gateway intact, the OpenVPN client is properly assigned an address from
the DHCP server on the server side.

There's more…
When using an external DHCP setup, keep in mind the following.

Client-server Ethernet-style Networks

[114]

DHCP server configuration
The proper solution is to configure the DHCP server such that DHCP requests from the
VPN clients do not get a default gateway assigned. This adds a burden to the
administration of the server-side DHCP server.

In this case, it also makes sense to explicitly set a unique MAC address in each client
configuration file using the following, for example:

lladdr CA:C6:F8:FB:EB:3B

On Linux, the MAC address is computed randomly when the TAP interface comes up, so
each time the OpenVPN client is stopped and started, a new IP address is allocated. It is
also possible to create a permanently fixed, static MAC address by using the system
configuration scripts to bring up the TAP device before OpenVPN is started.

DHCP relay
It is also possible to use an external DHCP server without using bridging. If the TAP
adapter is configured before OpenVPN is started and the server configuration file from this
recipe is used, then an external DHCP server can be used using the Linux dhrelay
command:

 [root@server]# dhrelay -i tap0 -i eth0

Make sure to list both the TAP adapter and the Ethernet adapter to which the external
DHCP server is connected. By combining this with a proxy-arp script (see the Proxy ARP
recipe from Chapter 2, Client-server IP-only Networks), it eliminates the need to use bridging
in most cases.

Tweaking /etc/sysconfig/network-scripts
On RedHat, Fedora, and OpenSuSE-based systems, the TAP adapter is brought up using a
script /etc/sysconfig/network-scripts/ifup-tap0 and the following command:

 [root@client]# /sbin/ifup tap0

By adding the line to the /etc/sysconfig/network-scripts/ifup-tap0 file,
the dhclient script ignores the gateway that is assigned from the DHCP server:

GATEWAYDEV=eth0

A similar hack can be developed for Debian/Ubuntu-based systems.

Client-server Ethernet-style Networks

[115]

Using the status file
OpenVPN offers several options to monitor the clients connected to a server. The most
commonly used method is using a status file. This recipe will show how to use and read the
OpenVPN status file. We will also focus on some subtleties of the status file in a TAP-style
setup.

Getting ready
Set up the client and server certificates using the first recipe from Chapter 2, Client-server
IP-only Networks. For this recipe, the server computer was running CentOS 6 Linux and
OpenVPN 2.3.10. The first client was running Fedora 20 Linux and OpenVPN 2.3.10. The
second client was running Windows 7 64 bit and OpenVPN 2.3.10. For the Linux client,
keep the client configuration file example3-1-client.conf at hand. For the Windows
client, keep the client configuration file example3-2-client2.ovpn at hand.

How to do it…
Create the server configuration file by adding a line to the example3-1-1.
server.conf. file:

 status /var/log/openvpn.status

Save it as example3-7-server.conf.

Start the server:2.

 [root@server]# openvpn --config example3-7-server.conf

First, start the Linux client using the configuration file from the earlier recipe and3.
ping a host on the remote network:

 [root@client1]# openvpn --config example3-1-client.conf
 [root@client1]# ping 10.198.0.1

Client-server Ethernet-style Networks

[116]

After the VPN is established, list the contents of the openvpn.status file (as4.
user root):

 [root@server]# cat /var/log/openvpn.status
 OpenVPN CLIENT LIST
 Updated,Wed Mar 2 17:34:39 2016
 Common Name,Real Address,Bytes Received,Bytes Sent,Connected
 Since
 client1,192.168.4.65:50183,10024,10159,Wed Mar 2 17:26:48
 2016
 ROUTING TABLE
 Virtual Address,Common Name,Real Address,Last Ref
 5e:52:73:5c:6a:ce,client1,192.168.4.65:50183,Wed Mar 2
 17:27:06 2016
 GLOBAL STATS
 Max bcast/mcast queue length,1
 END

Start the Windows client:5.

Ping a host on the remote network:6.

 [WinClient2]C:> ping 10.198.0.1

List the contents of the status file again on the server:7.

 [root@server]# cat /var/log/openvpn.status
 OpenVPN CLIENT LIST
 Updated,Wed Mar 2 17:40:22 2016
 Common Name,Real Address,Bytes Received,Bytes Sent,Connected
 Since
 client1,192.168.4.65:50183,10024,10159,Wed Mar 2 17:27:08
 2016
 client2,192.168.4.64:50186,18055,9726,Wed Mar 2 17:26:48
 2016

Client-server Ethernet-style Networks

[117]

 ROUTING TABLE
 Virtual Address,Common Name,Real Address,Last Ref
 5e:52:73:5c:6a:ce,client1,192.168.4.65:50183,Wed Mar 2
 17:27:06 2016
 00:ff:17:82:55:db,client2,192.168.4.64:50186,Wed Mar 2
 17:27:16 2016
 GLOBAL STATS
 Max bcast/mcast queue length,1
 END

How it works…
Each time a client connects to the OpenVPN server, the status file is updated with the
connection information. The OPENVPN CLIENTLIST and ROUTING TABLE tables are
the most interesting tables, as they show the following:

Which clients are connected
From which IP address the clients are connecting
The number of bytes each client has received and transferred
The time at which the client connected

The routing table also shows which networks are routed to each client. This routing table is
filled when clients start sending traffic that needs to be routed. The ping commands in the
recipe were used to trigger the routing table entries.

There's more…
When comparing this example with a TUN-style setup there are many similarities but also
some differences:

Difference with TUN-style networks
The major difference in the status file when using a TAP-style network compared to a TUN-
style network (see the Using the status file recipe from Chapter 2, Client-server IP-only
Networks) is in the ROUTING TABLE. The recipe from the previous chapter shows this:

10.200.0.2,client1,192.168.4.65:56764,<Date>

Whereas, in this recipe, we see the following:

5e:52:73:5c:6a:ce,client1,192.168.4.65:50183,<Date>

Client-server Ethernet-style Networks

[118]

The address 5e:52:73:5c:6a:ce is the randomly chosen MAC address of the tap adapter
on the client1 machine.

Disconnecting clients
Note that when a client disconnects, the status file is not updated immediately. OpenVPN
first tries to reconnect to the client based on the keepalive parameters in the server
configuration file. The server configuration file in this recipe uses this:

keepalive 10 60

This tells the server that it will ping the client every 10th second. The OpenVPN server will
double the second argument: if it does not get a response after 2 * 60 seconds, the
connection is restarted. The server will also tell the client to ping the server every 10
seconds and to restart the connection after 60 seconds if it does not get any response.

If the client explicitly closes the connection using the explicit-exit-notify directive or
when a TCP-based setup is used, the server does not wait for ping responses from the
client.

See also
The Using the status file recipe from Chapter 2, Client-server IP-only Networks,
which explains how the status file can be configured and used for IP-only style
networks

The management interface
This recipe shows how OpenVPN can be managed using the management interface on the
server.

Getting ready
Set up the client and server certificates using the first recipe from Chapter 2, Client-server
IP-only Networks.

Client-server Ethernet-style Networks

[119]

For this recipe, the server computer was running CentOS 6 Linux and OpenVPN 2.3.10. The
first client was running Fedora 20 Linux and OpenVPN 2.3.10. The second client was
running Windows 7 64 bit and OpenVPN 2.3.10.

For the server, keep the configuration file example3-1-server.conf from the first recipe
of this chapter at hand. For the Linux client, keep the client configuration file example3-1-
client.conf from the first recipe of this chapter at hand. For the Windows client, keep the
client configuration file example3-2-client2.ovpn from the Enabling client-to-client traffic
recipe at hand.

We use the following network layout:

How to do it…
Create the server configuration file by adding a line to the example3-1-1.
server.conf file:

 management tunnel 23000 stdin

Save it as example3-8-server.conf.2.
Start the server:3.

 [root@server]# openvpn --config example3-8-server.conf

The OpenVPN server will now first ask for a password for the management
interface.

Client-server Ethernet-style Networks

[120]

Start the clients using the configuration files from the earlier recipe:4.

 [root@client1]# openvpn --config example3-1-client.conf

Start the Windows client as well:5.

After the VPN is established, we can connect from the server to the management6.
interface of the OpenVPN client using the telnet program:

 [server]$ telnet 127.0.0.1 23000
 Trying 127.0.0.1...
 Connected to localhost.localdomain (127.0.0.1).
 Escape character is '^]'.
 ENTER PASSWORD:cookbook
 SUCCESS: password is correct
 >INFO:OpenVPN Management Interface Version 1 -- type 'help' for
 more info
 status
 OpenVPN CLIENT LIST
 Updated,Wed Mar 2 17:57:07 2016
 Common Name,Real Address,Bytes Received,Bytes Sent,Connected
 Since
 client1,192.168.4.64:50209,7851,8095,Wed Mar 2 17:56:08 2016
 client2,192.168.4.5:50212,11696,7447,Wed Mar 2 17:56:45 2016
 ROUTING TABLE
 Virtual Address,Common Name,Real Address,Last Ref
 00:ff:17:82:55:db,client2,192.168.4.5:50212,Wed Mar 2 17:56:49
 2016
 1e:b8:95:e5:60:21,client1,192.168.4.64:50209,Wed Mar 2
 17:56:53 2016
 GLOBAL STATS
 Max bcast/mcast queue length,1
 END

Note that it looks exactly like the status file from the previous recipe.

Client-server Ethernet-style Networks

[121]

It is also possible to disconnect a client:7.

 kill client2
 SUCCESS: common name 'client2' found, 1 client(s) killed

 status
 OpenVPN CLIENT LIST
 Updated,Wed Mar 2 17:58:51 2016
 Common Name,Real Address,Bytes Received,Bytes Sent,Connected
 Since
 client1,192.168.4.64:50209,8381,8625,Wed Mar 2 17:56:08 2016
 ROUTING TABLE
 Virtual Address,Common Name,Real Address,Last Ref
 1e:b8:95:e5:60:21,client1,192.168.4.64:50209,Wed Mar 2
 17:56:53 2016
 GLOBAL STATS
 Max bcast/mcast queue length,1
 END

Use Ctrl +] or exit to exit the telnet program.8.

How it works…
When the OpenVPN server starts, a special management interface is set up using the
directive:

management 127.0.0.1 23000 stdin

The interface is set up with these parameters:

The IP 127.0.0.1 to bind the management interface to localhost only.
The port 23000 on which the management interface will be listening.
The last parameter is the password file or the special keyword stdin to indicate
that the management interface password will be specified when OpenVPN starts
up. Note that this password is completely unrelated to the private key
passphrases or any other user management passwords that OpenVPN uses.

After the management interface comes up, the server operator can connect to it using
telnet and can query the server. By typing the following, the operator can disconnect a
client:

kill <clientcommonname>

Client-server Ethernet-style Networks

[122]

Note that if the OpenVPN client is configured to reconnect automatically, it will do so after
a few minutes.

When comparing the output of the management interface's status command with the
status file output shown in the Using the status file recipe from Chapter 2, Client-server IP-
only Networks, the major difference is the fact that here, the clients' MAC addresses are listed
instead of the VPN IP addresses. The OpenVPN does not even need to know the clients' IP
addresses, as they can be assigned by an external DHCP server.

There's more…
The management interface can also be run on the OpenVPN clients. See the Management
interface recipe in Chapter 2, Client-server IP-only Networks.

It is expected that the management interface will become more important in future versions
of OpenVPN, both on the client and the server side, as the preferred method to
programmatically interact with the OpenVPN software.

See also
The Management interface recipe from Chapter 2, Client-server IP-only Networks, in
which the client-side management interface is explained
The Using the status file recipe from Chapter 2, Client-server IP-only Networks,
where the details of the status file for a TUN-style network are explained

Integrating IPv6 into TAP-style networks
For the final recipe of this chapter, we will show how to integrate IPv6 settings into TAP-
style networks. TAP-style networks have had support for IPv6 traffic longer than TUN-style
networks, as a TAP-style network provides an Ethernet-like layer. This layer is capable of
transporting almost any kind of network protocol, including IPv6. In OpenVPN 2.3, better
IPv6 support was added so that an OpenVPN server could provide a DHCP pool with IPv6
addresses. In this recipe, we will show just how to do that.

Client-server Ethernet-style Networks

[123]

Getting ready
Set up the client and server certificates using the first recipe from Chapter 2, Client-server
IP-only Networks. For this recipe, both the server computer and the client computer were
running CentOS 6 Linux and OpenVPN 2.3.10. For the server, keep the configuration
file example3-1-server.conf from the first recipe of this chapter at hand. For the client,
keep the client configuration file example3-1-client.conf from the first recipe of this
chapter at hand.

We use the following network layout:

How to do it…
Modify the server configuration file, example3-1-server.conf, by adding a1.
line:

 server-ipv6 2001:db8:99::0/112

Save it as example3-9-server.conf.2.
Start the server:3.

 [root@server]# openvpn --config example3-9-server.conf

Start the client:4.

 [root@client1]# openvpn --config example3-1-client.conf \
 --suppress-timestamps
 OpenVPN 2.3.10 x86_64-redhat-linux-gnu [SSL (OpenSSL)] [LZO]
 [EPOLL] [PKCS11] [MH] [IPv6] built on Jan 4 2016
 library versions: OpenSSL 1.0.1e-fips 11 Feb 2013, LZO 2.03
 Control Channel Authentication: using
 '/etc/openvpn/cookbook/ta.key' as a OpenVPN static key file
 UDPv4 link local: [undef]
 UDPv4 link remote: [AF_INET]openvpnserver:1194

Client-server Ethernet-style Networks

[124]

 [openvpnserver] Peer Connection Initiated with
 [AF_INET]openvpnserver:1194
 TUN/TAP device tap0 opened
 do_ifconfig, tt->ipv6=1, tt->did_ifconfig_ipv6_setup=1
 /sbin/ip link set dev tap0 up mtu 1500
 /sbin/ip addr add dev tap0 192.168.99.2/24 broadcast
 192.168.99.255
 /sbin/ip -6 addr add 2001:db8:99::1000/112 dev tap0
 Initialization Sequence Completed

Note that we have suppressed timestamps in the log file using the command-
line directive --suppress-timestamps.

After the VPN is established, verify that we can reach the server using the ping65.
command:

 [client]$ ping6 -c 4 2001:db8:99::1
 ping6 -c 4 2001:db8:99::1
 PING 2001:db8:99::1(2001:db8:99::1) 56 data bytes
 64 bytes from 2001:db8:99::1: icmp_seq=1 ttl=64 time=0.620 ms
 64 bytes from 2001:db8:99::1: icmp_seq=2 ttl=64 time=0.630 ms
 64 bytes from 2001:db8:99::1: icmp_seq=3 ttl=64 time=0.631 ms
 64 bytes from 2001:db8:99::1: icmp_seq=4 ttl=64 time=0.627 ms
 --- 2001:db8:99::1 ping statistics ---
 4 packets transmitted, 4 received, 0% packet loss, time
 3000ms
 rtt min/avg/max/mdev = 0.620/0.627/0.631/0.004 ms

How it works…
IPv6 support for TAP-style networks is nearly identical to IPv6 support for TUN-style
networks. By adding a single line to the server configuration file, we provide IPv6
addresses to the connecting VPN clients:

server-ipv6 2001:db8:99::0/112

The same directives, ending in -ip6, which apply to TUN-based setups, also apply to TAP-
style networks.

Client-server Ethernet-style Networks

[125]

There's more…
The firewall rules for IPv6 traffic are slightly different from the firewall rules for IPv4 traffic.
Also, with TAP-style networks, it is often useful to allow all incoming and outgoing traffic
on the tap+ adapter range. This can be especially helpful when debugging a non-working
setup:

 # iptables -I INPUT -i tap+ -j ACCEPT
 # iptables -I OUTPUT -o tap+ -j ACCEPT
 # ip6tables -I INPUT -i tap+ -j ACCEPT
 # ip6tables -I OUTPUT -o tap+ -j ACCEPT
 # iptables -I FORWARD -i tap+ -j ACCEPT
 # iptables -I FORWARD -o tap+ -j ACCEPT
 # ip6tables -I FORWARD -i tap+ -j ACCEPT
 # ip6tables -I FORWARD -o tap+ -j ACCEPT

Note that such rules should be used for debugging purposes only.

See also
The Adding IPv6 support recipe from Chapter 2, Client-server IP-only Networks, in
which IPv6 support is added to a very similar TUN-style setup

4
PKI, Certificates, and OpenSSL

In this chapter, we will cover:

Certificate generation
OpenSSL tricks: x509, pkcs12, verify output
Revoking certificates
The use of CRLs
Checking expired/revoked certificates
Intermediary CAs
Multiple CAs: stacking, using the capath directive
Determining which crypto library is used
Crypto features of OpenSSL and PolarSSL
Pushing ciphers
Elliptic curve support

Introduction
This chapter is a small detour into the public key infrastructures (PKIs), certificates,
and openssl commands. The primary purpose of the recipes in this chapter is to show how
the certificates, which are used in OpenVPN, can be generated, managed, viewed, and what
kind of interactions exist between OpenSSL and OpenVPN.

PKI, Certificates, and OpenSSL

[127]

Certificate generation
This recipe will demonstrate how to create and sign a certificate request using plain
openssl commands. This is slightly different from using the easy-rsa scripts, but very
instructive.

Getting ready
Set up the easy-rsa certificate environment using the first recipe from Chapter 2, Client-
server IP-only Networks, by sourcing the vars file. This recipe was performed on a computer
running Fedora 22 Linux but it can easily be run on Windows or MacOS. Note that
the easy-rsa package can be downloaded independently of OpenVPN itself.

How to do it…
Before we can use plain openssl commands to generate and sign a request, there are a few
environment variables that need to be set. These variables are not set in the vars file by
default.

Add the missing environment variables:1.

 $ cd /etc/openvpn/cookbook
 $. ./vars
 $ export KEY_CN=
 $ export KEY_OU=
 $ export KEY_NAME=
 $ export OPENSSL_CONF=/etc/openvpn/cookbook/openssl-
 1.0.0.cnf

Note that the openssl-1.0.0.cnf file is part of the easy-rsa distribution
and should already be present in the directory /etc/openvpn/cookbook.

Next, we generate the certificate request without a password. This is achieved by2.
adding the option -nodes to the openssl req command:

 $ openssl req -nodes -newkey rsa:2048 -new -out client.req \
 -subj "/C=NL/O=Cookbook/CN=MyClient"
 Generating a 2048 bit RSA private key
 ++++++
 ++++++
 writing new private key to 'privkey.pem'

PKI, Certificates, and OpenSSL

[128]

Finally, we sign the certificate request using the Certificate Authority private key:3.

 $ openssl ca -in client.req -out client.crt
 Using configuration from /etc/openvpn/cookbook/openssl.cnf
 Enter pass phrase for /etc/openvpn/cookbook/keys/ca.key:
 [enter CA key password]
 Check that the request matches the signature
 Signature ok
 The Subject's Distinguished Name is as follows
 countryName :PRINTABLE:'NL'
 organizationName :PRINTABLE:'Cookbook'
 commonName :PRINTABLE:'MyClient'
 Certificate is to be certified until Apr 20 15:08:25 2026 GMT
 (3650 days)
 Sign the certificate? [y/n]:y
 1 out of 1 certificate requests certified, commit? [y/n]y
 Write out database with 1 new entries
 Data Base Updated

How it works…
The first step is always to generate a private key. In this recipe, we generate a private key
without a password, which is not really secure. A certificate request is signed using the
private key to prove that the certificate request and the private key belong together. The
openssl req command generates both the private key and the certificate requests in one
go.

The second step is to sign the certificate request using the private key of the Certificate
Authority (CA). This results in an X.509 certificate file, which can be used in OpenVPN.

A copy of the (public) X.509 certificate is also stored in the /etc/openvpn/cookbook/keys
directory. This copy is important if the certificate needs to be revoked later on, so do not
remove it from that directory.

There's more…
It is also possible to generate a private key protected by a password (“pass phrase” in
OpenSSL terms). In order to generate such a private key, simply remove the -nodes
command line parameter:

 $ openssl req -newkey rsa:1024 -new -out client.req \
 -subj "/C=NL/O=Cookbook/CN=MyClient"

PKI, Certificates, and OpenSSL

[129]

The OpenSSL command will now ask for a passphrase:

 Enter PEM pass phrase:
 Verifying - Enter PEM pass phrase:

See also
The Setting up the public and private keys recipe from Chapter 2, Client-server IP-
only Networks, where the initial setup of the PKI using the easy-rsa scripts is
explained

OpenSSL tricks – x509, pkcs12, verify output
The OpenSSL commands may seem daunting at first, but there are a lot of useful
commands in the OpenSSL toolbox for viewing and managing X.509 certificates and private
keys. This recipe will show how to use a few of those commands.

Getting ready
Set up the easy-rsa certificate environment using the first recipe from Chapter 2, Client-
server IP-only Networks, by sourcing the vars file. This recipe was performed on a computer
running Fedora 22 Linux but it can easily be run on Windows or MacOS.

How to do it…
For this recipe, we need to perform the following steps:

To view the subject and expiry date of a given certificate, type:1.

 $ cd /etc/openvpn/cookbook/keys
 $ openssl x509 -subject -enddate -noout -in client1.crt
 subject= /C=US/O=Cookbook 2.4/CN=client1
 notAfter=Oct 13 17:54:30 2018 GMT

To export a certificate and private key in PKCS12 format:2.

 $ openssl pkcs12 -export -in client1.crt \
 -inkey client1.key -out client1.p12
 Enter Export Password:[Choose a strong password]

https://cdp.packtpub.com/openvpncookbooksecondedition/wp-admin/post.php?post=36&action=edit#post_391
https://cdp.packtpub.com/openvpncookbooksecondedition/wp-admin/post.php?post=36&action=edit#post_391

PKI, Certificates, and OpenSSL

[130]

 Verifying - Enter Export Password:[Type the password again]
 $ chmod 600 client1.p12

Note that the chmod 600 ensures that the PKCS12 file is readable only by the
user.

Verify the purpose of a given certificate:3.

 $ openssl verify -purpose sslclient -CAfile ca.crt client1.crt
 client1.crt: OK

Notice the error if we select the wrong purpose (sslclient versus sslserver):4.

 $ openssl verify -purpose sslclient -CAfile ca.crt server.crt
 server.crt: C = US, O = Cookbook 2.4, CN = openvpnserver
 error 26 at 0 depth lookup:unsupported certificate purpose
 OK

Change the password (passphrase) of a certificate:5.

 $ openssl rsa -in client2.key -aes256 -out newclient.key
 Enter pass phrase for client2.key:[old password]
 writing RSA key
 Enter PEM pass phrase:[new password]
 Verifying - Enter PEM pass phrase:[new password]

How it works…
The OpenSSL toolkit consists of a wide range of commands to generate, manipulate, and
view X.509 certificates and their corresponding private keys. The commands in this chapter
are but a small subset of the available commands. On Linux and UNIX systems, you can use
openssl -h and the manual pages for x509, pkcs12, and req for more details. The
manual pages are also available online at
http://www.openssl.org/docs/apps/openssl.html.

Click on the OpenSSL commands lower down in the list of all commands for direct
pointers.

http://www.openssl.org/docs/apps/openssl.html

PKI, Certificates, and OpenSSL

[131]

Revoking certificates
A common task when managing a PKI is to revoke certificates that are no longer needed or
that have been compromised. This recipe demonstrates how certificates can be revoked
using the easy-rsa script and how OpenVPN can be configured to make use of
a Certificate Revocation List (CRL).

Getting ready
Set up the client and server certificates using the first recipe from Chapter 2, Client-server
IP-only Networks. This recipe was performed on a computer running CentOS 6 Linux, but it
can easily be run on Windows or Mac OS.

How to do it…
First, we generate a certificate:1.

 $ cd /etc/openvpn/cookbook
 $. ./vars
 $./build-key client4
 [...]

Then, we immediately revoke it:2.

 $./revoke-full client4
 Using configuration from /etc/openvpn/cookbook/openssl-
 1.0.0.cnf
 Enter pass phrase for /etc/openvpn/cookbook/keys/ca.key:
 Revoking Certificate 06.
 Data Base Updated
 Using configuration from /etc/openvpn/cookbook/openssl-
 1.0.0.cnf
 Enter pass phrase for /etc/openvpn/cookbook/keys/ca.key:
 client4.crt: C = US, O = Cookbook 2.4, CN = client4
 error 23 at 0 depth lookup:certificate revoked

This will also update the CRL list. The CRL can be viewed using the command:3.

 $ openssl crl -text -noout -in keys/crl.pem
 Certificate Revocation List (CRL):
 Version 1 (0x0)
 Signature Algorithm: sha256WithRSAEncryption

https://cdp.packtpub.com/openvpncookbooksecondedition/wp-admin/post.php?post=36&action=edit#post_391

PKI, Certificates, and OpenSSL

[132]

 Issuer: /C=US/O=Cookbook 2.4/CN=Cookbook 2.4
 CA/emailAddress=openvpn@example.com
 Last Update: Apr 22 15:54:10 2016 GMT
 Next Update: May 22 15:54:10 2016 GMT
 Revoked Certificates:
 Serial Number: 06
 Revocation Date: Apr 22 15:54:08 2016 GMT
 Signature Algorithm: sha256WithRSAEncryption
 12:8a:f0:b4:3e:aa:5b:a1:13:64:41:c7:0b:46:ef:00:99:50:
 6b:72:b8:2e:ff:93:eb:9b:7e:63:9e:8d:78:63:e8:96:44:30:
 5b:eb:3d:4a:a4:2a:36:1e:8c:c6:cd:11:63:b1:d5:88:31:46:

How it works…
A CRL contains a list of certificate serial numbers that have been revoked. Each serial
number can be handed out by a CA only once, so this serial number is unique to this
particular CA. The CRL is signed using the CA's private key, ensuring that the CRL is
indeed issued by the appropriate party.

There's more…
The question “what exactly is needed to revoke a certificate” is often asked, so the following
section goes a bit deeper into this.

What is needed to revoke a certificate
In order to revoke a certificate, the certificate subject (“DN”) is required as well as the
certificate serial number. If a certificate is lost, then it is simply not possible to revoke it.
This shows how important it is to do proper PKI management, including backing up the
certificates that have been handed out to users.

See also
The next recipe, The use of CRLs
The recipe later in this chapter, Multiple CA's: stacking, using the -capath directive

PKI, Certificates, and OpenSSL

[133]

The use of CRLs
This recipe shows how to configure OpenVPN to use a CRL. It uses the CRL created in the
previous recipe. This recipe is an extension of the recipe Routing: masquerading in Chapter
2, Client-server IP-only Networks, in the sense that the server and client configuration files are
almost identical.

Getting ready
Set up the client and server certificates using the first recipe from Chapter 2, Client-server
IP-only Networks. Generate the CRL using the previous recipe. For this recipe, the server
computer was running CentOS 6 Linux and OpenVPN 2.3.10. The client was running
Fedora 22 Linux and OpenVPN 2.3.10. Keep the server configuration file basic-udp-
server.conf from the Server-side routing recipe in Chapter 2, Client-server IP-only
Networks.

How to do it…
Copy the generated CRL to a more public directory:1.

 [root@server]# cd /etc/openvpn/cookbook
 [root@server]# cp keys/crl.pem .

Modify the server config file basic-udp-server.conf by adding the lines:2.

 crl-verify /etc/openvpn/cookbook/crl.pem

Save it as example4-6-server.conf.

Start the server:3.

 [root@server]# openvpn --config example4-6-server.conf

Next, create the client configuration file:4.

 client
 proto udp
 remote openvpnserver.example.com
 port 1194
 dev tun
 nobind

https://cdp.packtpub.com/openvpncookbooksecondedition/wp-admin/post.php?post=36&action=edit#post_391
https://cdp.packtpub.com/openvpncookbooksecondedition/wp-admin/post.php?post=36&action=edit#post_391
https://cdp.packtpub.com/openvpncookbooksecondedition/wp-admin/post.php?post=36&action=edit#post_391
https://cdp.packtpub.com/openvpncookbooksecondedition/wp-admin/post.php?post=36&action=edit#post_391

PKI, Certificates, and OpenSSL

[134]

 remote-cert-tls server
 tls-auth /etc/openvpn/cookbook/ta.key 1
 ca /etc/openvpn/cookbook/ca.crt
 cert /etc/openvpn/cookbook/client4.crt
 key /etc/openvpn/cookbook/client4.key

And save it as example4-6-client.conf.

Finally, start the client:5.

 [root@client]# openvpn --config example4-6-client.conf

The client will not be able to connect but instead, the server log file shows:

 [...] TLS_ERROR: BIO read tls_read_plaintext error: error:140890B2:SSL
 routines:SSL3_GET_CLIENT_CERTIFICATE:no certificate returned
 [...] TLS Error: TLS object -> incoming plaintext read error
 [...] TLS Error: TLS handshake failed

This rather cryptic message proves that the client is not allowed to connect because the
certificate is not valid.

How it works…
Each time a client connects to the OpenVPN server, the CRL is checked to see whether the
client certificate is listed. If it is, the OpenVPN server simply refuses to accept the client
certificate and the connection will not be established.

There's more…
Generating a CRL is one thing and keeping it up-to-date is another. It is very important to
ensure that the CRL is kept up-to-date. For this purpose, it is best to set up a cron job that
updates the server CRL file overnight. There is an outstanding bug in OpenVPN related to
CRL updates: each time a client connects, the OpenVPN server tries to access the CRL file. If
the file is not present or not accessible, then the OpenVPN server process aborts with an
error. The proper behavior would be to temporarily refuse access to the clients but
unfortunately, this is not the case.

PKI, Certificates, and OpenSSL

[135]

See also
The recipe later in this chapter, Multiple CAs: stacking, using the -capath directive, in
which a more advanced use of CA and CRL is explained

Checking expired/revoked certificates
The goal of this recipe is to give an insight into some of the internals of the OpenSSL CA
commands. We will show how a certificate's status is changed from “Valid” to “Revoked”,
or “Expired”.

Getting ready
Set up the client and server certificates using the first recipe from Chapter 2, Client-server
IP-only Networks. This recipe was performed on a computer running CentOS 6 Linux but it
can easily be run on Windows or Mac OS.

How to do it…
Before we can use plain openssl commands, there are a few environment1.
variables that need to be set. These variables are not set in the vars file by
default:

 $ cd /etc/openvpn/cookbook
 $. ./vars
 $ export KEY_NAME=
 $ export OPENSSL_CONF=/etc/openvpn/cookbook/openssl-1.0.0.cnf

Now, we can query the status of a certificate using its serial number:2.

 $ cd keys
 $ openssl x509 -serial -noout -in server.crt
 serial=01
 $ openssl ca -status 01
 Using configuration from /etc/openvpn/cookbook/openssl-
 1.0.0.cnf
 01=Valid (V)

This shows that our OpenVPN server certificate is still valid.

https://cdp.packtpub.com/openvpncookbooksecondedition/wp-admin/post.php?post=36&action=edit#post_391

PKI, Certificates, and OpenSSL

[136]

The certificate we revoked in the Revoking certificates recipe, shows the following:3.

 $ openssl x509 -serial -noout -in client4.crt
 serial=06
 $ openssl ca -status 06
 Using configuration from /etc/openvpn/cookbook/openssl-
 1.0.0.cnf
 08=Revoked (R)

If we look at the file index.txt in the /etc/openvpn/cookbook/keys4.
directory, we see:

 V 181013174924Z 01 unknown .../CN=openvpnserver
 R 190117155337Z 160422155408Z 06 unknown .../CN=client4

Next, we modify this file using a normal text editor and replace the R with an E5.
and we blank out the third field 160422155408Z with spaces. This field is the
timestamp when the certificate was revoked. The second line now becomes:

 E 190117155337Z 08 unknown .../CN=client4

Now, if we check the status again we get:6.

 $ openssl ca -status 06
 Using configuration from /etc/openvpn/cookbook/openssl-
 1.0.0.cnf
 08=Expired (E)

If we generate the CRL again, we see that the certificate has been “un-
revoked”:

 $ openssl ca -gencrl -out crl.pem
 $ openssl crl -text -noout -in crl.pem | head -8
 Certificate Revocation List (CRL):
 Version 1 (0x0)
 Signature Algorithm: sha256WithRSAEncryption
 Issuer: /C=US/O=Cookbook 2.4/CN=Cookbook 2.4
 CA/emailAddress=openvpn@example.com
 Last Update: Apr 26 15:02:01 2016 GMT
 Next Update: May 26 15:02:01 2016 GMT
 No Revoked Certificates.
 Signature Algorithm: sha256WithRSAEncryption

PKI, Certificates, and OpenSSL

[137]

How it works…
The OpenSSL ca command generates its CRL by looking at the index.txt file. Each line
that starts with an R is added to the CRL, after which the CRL is cryptographically signed
using the CA private key.

By changing the status of a revoked certificate to E or even V we can unrevoke a certificate.

There's more…
In this recipe, we changed a certificate from Revoked to Expired. This will allow the client
from the previous recipe to connect again to the server, as the certificate is still valid. The
main reason to change a certificate from Valid to Expired in the indext.txt file is to
allow us to generate and hand out a new certificate using the exact same name.

Intermediary CAs
This recipe shows how to set up an intermediary CA and how to configure OpenVPN to
make use of an intermediary CA. The OpenVPN easy-rsa scripts also include
functionality to set up an intermediary CA. The advantage of an intermediary CA (or sub
CA) is that the top-level CA (also known as the root CA) can be guarded more closely. The
intermediary CAs can be distributed to the people responsible for generating the server and
client certificates.

Getting ready
Set up the client and server certificates using the first recipe from Chapter 2, Client-server
IP-only Networks. This recipe was performed on a computer running CentOS 6 Linux but it
can easily be run on Windows or Mac OS.

How to do it…
First, we create the intermediary CA certificate:1.

 $ cd /etc/openvpn/cookbook/
 $. ./vars
 $./build-inter IntermediateCA

https://cdp.packtpub.com/openvpncookbooksecondedition/wp-admin/post.php?post=36&action=edit#post_391

PKI, Certificates, and OpenSSL

[138]

Verify that this certificate can indeed act as a Certificate Authority:2.

 $ openssl x509 -text -noout -in keys/IntermediateCA.crt \
 | grep -C 1 CA
 X509v3 Basic Constraints:
 CA:TRUE
 Signature Algorithm: sha1WithRSAEncryption

Next, we create a new keys directory for our intermediary CA (the current3.
directory is still /etc/openvpn/cookbook):

 $ mkdir -m 700 -p IntermediateCA/keys
 $ cp [a-z]* IntermediateCA
 $ cd IntermediateCA

Edit the vars file in the new directory and change the EASY_RSA line to:4.

 export EASY_RSA=/etc/openvpn/cookbook/IntermediateCA

Source this new vars file and set up the keys directory:5.

 $. ./vars
 $./clean-all
 $ cp ../keys/IntermediateCA.crt keys/ca.crt
 $ cp ../keys/IntermediateCA.key keys/ca.key

Now we are ready to create our first intermediary certificate:6.

 $./build-key IntermediateClient

Verify that the certificate has the new Intermediary CA as its issuer:7.

 $ openssl x509 -subject -issuer -noout -in
 keys/IntermediateClient.crt
 subject= /C=US/O=Cookbook 2.4/CN=IntermediateClient
 issuer= /C=US/O=Cookbook 2.4/CN=subCA/emailAddress=...

And finally, we verify that the certificate is indeed a valid certificate. In order to8.
do this we need to “stack” the root CA (public) certificate and the intermediary
CA certificate into a single file:

 $ cd /etc/openvpn/cookbook
 $ cat keys/ca.crt IntermediateCA/keys/ca.crt > ca+subca.pem
 $ cp IntermediateCA/keys/IntermediateClient.{crt,key} .
 $ openssl verify -CAfile ca+subca.pem IntermediateClient.crt
 IntermediateClient.crt: OK

PKI, Certificates, and OpenSSL

[139]

How it works…
The intermediary CA certificate has the “right” to act as a certificate authority, meaning that
it can sign new certificates itself. The intermediary CA needs a directory structure for this,
which is very similar to the root CA directory structure. First, we set up this directory
structure and then we copy over all the necessary files. After that we create a client
certificate and verify that it is a valid certificate. In order to perform this validation, the
entire certificate chain from the root-level CA to the intermediary CA to the client certificate
need to be present. This is why the root CA public certificate and the intermediary CA
public certificate are stacked into a single file. This single file is then used to perform the
entire certificate chain validation.

There's more…
Certificates that have been issued by an intermediary CA also need to be revoked by the
same CA. This means that with multiple CAs you will also have to use multiple CRLs.
Fortunately, CRLs can be stacked just like CA certificates: concatenate the files together
using the cat command, as will be explained in the next recipe.

Multiple CAs – stacking, using the capath
directive
The goal of this recipe is to create an OpenVPN setup where the client certificates are signed
by a “client-only” CA and the server certificate is signed by a different “server-only” CA.
This provides an extra level of operational security, where one person is allowed to create
only client certificates, whereas another is allowed to generate only a server certificate. This
ensures that the client and server certificates can never be mixed for a Man-in-the-Middle
attack.

Getting ready
Set up the server certificate using the first recipe from Chapter 2, Client-server IP-only
Networks. Use the client certificate and the intermediary CA certificate from the previous
recipe. For this recipe, the server computer was running CentOS 6 Linux and OpenVPN
2.3.10. The client was running Fedora 22 Linux and OpenVPN 2.3.10.

https://cdp.packtpub.com/openvpncookbooksecondedition/wp-admin/post.php?post=36&action=edit#post_391

PKI, Certificates, and OpenSSL

[140]

How to do it…
Create the server configuration file:1.

 tls-server
 proto udp
 port 1194
 dev tun

 server 192.168.200.0 255.255.255.0

 ca /etc/openvpn/cookbook/ca+subca.pem
 cert /etc/openvpn/cookbook/server.crt
 key /etc/openvpn/cookbook/server.key
 dh /etc/openvpn/cookbook/dh1024.pem
 tls-auth /etc/openvpn/cookbook/ta.key 0

 persist-key
 persist-tun
 keepalive 10 60

 user nobody
 group nobody

 daemon
 log-append /var/log/openvpn.log

Save it as example4-9-server.conf.

Start the server:2.

 [root@server]# openvpn --config example4-9-server.conf

Next, create the client configuration file:3.

 client
 proto udp
 remote openvpnserver.example.com
 port 1194

 dev tun
 nobind

 tls-auth /etc/openvpn/cookbook/ta.key 1
 ca /etc/openvpn/cookbook/ca.crt
 cert /etc/openvpn/cookbook/IntermediateClient.crt
 key /etc/openvpn/cookbook/IntermediateClient.key

PKI, Certificates, and OpenSSL

[141]

Save it as example4-9-client.conf. Note that we did not specify
the ca+subca.pem file in the client configuration.

Start the client:4.

 [root@client]# openvpn --config example4-9-client.conf

In the server log files, you can now see the client connecting using the certificate5.
that was created by the Intermediary CA:

 ... openvpnclient:49283 [IntermediateClient] Peer Connection
 Initiated with openvpnclient:49283

How it works…
When the client connects to the server, the client (public) certificate is sent to the server for
verification. The server needs to have access to the full certificate chain in order to do the
verification; therefore, we stack the root CA certificate and the intermediary CA (or sub-CA)
certificate together. This allows the client to connect to the server.

Vice versa, when the client connects, the server (public) certificate is also sent to the client.
As the server certificate was originally signed by the root CA, we do not need to specify the
full certificate stack here.

Note that if we had forgotten to specify the ca+subca.pem file in the OpenVPN server
configuration file, we would have received an error:

openvpnclient:49286 VERIFY ERROR: depth=0, error=unable to get local issuer
certificate: C=US, O=Cookbook 2.4, CN=IntermediateClient

There's more…
Apart from stacking the CA certificates, it is also possible to stack the CRLs or to use an
entirely different mechanism to support multiple CA certificates and their corresponding
CRLs.

PKI, Certificates, and OpenSSL

[142]

Using the –capath directive
Another way to include multiple CAs and CRLs in the OpenVPN server configuration is to
use the following directive:

capath /etc/openvpn/cookbook/ca-dir

This directory needs to contain all CA certificates and CRLs using a special naming
convention:

All CA certificates must have a name equal to the hash of the CA certificate, and
must end with .0
All CRLs must have a name equal to the hash of the CA certificate, and must end
with .r0

For our root CA and intermediary CA, we can achieve this using the following commands:

 $ cd /etc/openvpn/cookbook
 $ mkdir ca-dir
 $ openssl x509 -hash -noout -in keys/ca.crt
 bcd54da9

This hexadecimal number bcd54da9 is the hash of the root CA certificate:

 $ cp keys/ca.crt ca-dir/bcd54da9.0
 $ cp keys/crl.pem ca-dir/bcd54da9.r0

Similarly, for the intermediary CA certificate:

 $ openssl x509 -hash -noout -in IntermediateCA/keys/ca.crt
 1f5e4734
 $ cp IntermediateCA/keys/ca.crt ca-dir/1f5e4734.0
 $ cp IntermediateCA/keys/crl.pem ca-dir/1f5e4734.r0

When using many different CA certificates and corresponding CRLs, this method is far
easier to manage than the “stacked” files.

Determining the crypto library to be used
Starting with OpenVPN 2.3, it became possible to build OpenVPN using either the
OpenSSL cryptographic library or the PolarSSL library. The PolarSSL library is nowadays
known as “mbedTLS”. The PolarSSL library is used in the OpenVPN Connect apps for both
Android and iOS, but the library can be used on all other supported platforms as well.

PKI, Certificates, and OpenSSL

[143]

The goal of this recipe is to show how to determine which cryptographic library is used,
including the run-time version number.

Getting ready
Set up the server certificate using the first recipe from Chapter 2, Client-server IP-only
Networks. Use the client certificate and the intermediary CA certificate from the previous
recipe. For this recipe, the computer was running Fedora 22 Linux and OpenVPN 2.3.10,
built both for OpenSSL and for PolarSSL. Keep the server configuration file basic-udp-
server.conf from the Server-side routing recipe in Chapter 2, Client-server IP-only
Networks.

How to do it…
Start the regular version of OpenVPN using the standard configuration file:1.

 [root@server]# openvpn --config basic-udp-server.conf

Check the first few lines of the server log file:2.

 OpenVPN 2.3.10 x86_64-redhat-linux-gnu [SSL (OpenSSL)] [LZO]
 [EPOLL] [PKCS11] [MH] [IPv6] built on Jan 4 2016

 library versions: OpenSSL 1.0.1e-fips 11 Feb 2013, LZO 2.08

Stop the server by killing the openvpn process.3.
Next, change the system's LD_LIBRARY_PATH to point to a more recent version of4.
OpenSSL:

 [root@server]# export LD_LIBRARY_PATH=..../openssl-1.0.1s
 [root@server]# openvpn --config basic-udp-server.conf

Check the first few lines of the server log file:5.

 OpenVPN 2.3.10 x86_64-redhat-linux-gnu [SSL (OpenSSL)] [LZO]
 [EPOLL] [PKCS11] [MH] [IPv6] built on Jan 4 2016

 library versions: OpenSSL 1.0.1s 1 Mar 2016, LZO 2.08

Again, stop the server by killing the openvpn process.6.

https://cdp.packtpub.com/openvpncookbooksecondedition/wp-admin/post.php?post=36&action=edit#post_391
https://cdp.packtpub.com/openvpncookbooksecondedition/wp-admin/post.php?post=36&action=edit#post_391

PKI, Certificates, and OpenSSL

[144]

Switch to the PolarSSL-built version of OpenVPN and start the server again:7.

 [root@server]# .../openvpn-2.3.10polarssl/openvpn --config
 basic-udp-server.conf

Check the first few lines of the server log file:8.

 OpenVPN 2.3.10 x86_64-unknown-linux-gnu [SSL (PolarSSL)] [LZO]
 [EPOLL] [MH] [IPv6] built on Apr 27 2016

 library versions: PolarSSL 1.3.16, LZO 2.08

How it works…
When OpenVPN starts the cryptographics libraries are loaded and initialized. At this point,
the library's version string is retrieved and printed. By using different builds of the crypto
libraries we see that only the few first lines of the server logfile alter.

There's more…
The type and build of cryptographics library used determine some of the more advanced
features of OpenVPN, as we will see in the next few recipes. The library version string
provides vital information for debugging a non-working setup, as we will see in Chapter
6, Troubleshooting OpenVPN – Configurations.

See also
The next recipe, in which the differences between the cryptographic libraries is
explained
The How to read the OpenVPN log files recipe, from Chapter 6, Troubleshooting
OpenVPN – Configurations, which shows in detail how to read the OpenVPN log
files

PKI, Certificates, and OpenSSL

[145]

Crypto features of OpenSSL and PolarSSL
As stated in the previous recipe, it has been possible to build OpenVPN using either the
OpenSSL cryptographic library or the PolarSSL library since version 2.3. In this recipe, we
will show what some of the key differences between the two cryptographic libraries are.

Getting ready
Set up the server certificate using the first recipe from Chapter 2, Client-server IP-only
Networks. Use the client certificate and the intermediary CA certificate from the previous
recipe. For this recipe, the computer was running Fedora 22 Linux and OpenVPN 2.3.10,
built both for OpenSSL and for PolarSSL.

How to do it…
Start the regular version of OpenVPN with the --show-ciphers option:1.

 [root@server]# openvpn --show-ciphers

OpenVPN will now list all available ciphers, which can easily exceed 50 ciphers2.
for OpenSSL 1.0+. The most common ciphers are:

 BF-CBC 128 bit default key (variable)
 BF-CFB 128 bit default key (variable) (TLS client/server...)
 BF-OFB 128 bit default key (variable) (TLS client/server...)
 AES-128-CBC 128 bit default key (fixed)
 AES-128-OFB 128 bit default key (fixed) (TLS client...)
 AES-128-CFB 128 bit default key (fixed) (TLS client...)
 AES-256-CBC 256 bit default key (fixed)
 AES-256-OFB 256 bit default key (fixed) (TLS client...)
 AES-256-CFB 256 bit default key (fixed) (TLS client...)
 AES-128-CFB1 128 bit default key (fixed) (TLS client...)
 AES-192-CFB1 192 bit default key (fixed) (TLS client...)
 AES-256-CFB1 256 bit default key (fixed) (TLS client...)
 AES-128-CFB8 128 bit default key (fixed) (TLS client...)
 AES-192-CFB8 192 bit default key (fixed) (TLS client...)
 AES-256-CFB8 256 bit default key (fixed) (TLS client...)

https://cdp.packtpub.com/openvpncookbooksecondedition/wp-admin/post.php?post=36&action=edit#post_391

PKI, Certificates, and OpenSSL

[146]

Next, switch to the PolarSSL-built version of OpenVPN and re-run the same3.
command:

 [root@server]# .../openvpn-2.3.10polarssl/openvpn --show-
 ciphers

The list of ciphers now is:4.

 AES-128-CBC 128 bit default key
 AES-192-CBC 192 bit default key
 AES-256-CBC 256 bit default key
 BF-CBC 128 bit default key
 CAMELLIA-128-CBC 128 bit default key
 CAMELLIA-192-CBC 192 bit default key
 CAMELLIA-256-CBC 256 bit default key
 DES-CBC 64 bit default key
 DES-EDE-CBC 128 bit default key
 DES-EDE3-CBC 192 bit default key

Start the regular version of OpenVPN with the --show-digests option:5.

 [root@server]# openvpn --show-digests

OpenVPN will now list all available HMAC algorithms, which can be specified6.
using the --auth option. This list can easily exceed 25 entries, therefore only the
most commonly used are printed:

 MD5 128 bit digest size
 SHA 160 bit digest size
 RIPEMD160 160 bit digest size
 ecdsa-with-SHA1 160 bit digest size
 SHA224 224 bit digest size
 SHA256 256 bit digest size
 SHA384 384 bit digest size
 SHA512 512 bit digest size

Next, switch to the PolarSSL-built version of OpenVPN and re-run the same7.
command:

 [root@server]# .../openvpn-2.3.10polarssl/openvpn --show-
 digests

The list of HMAC algorithms now is:8.

 SHA512 512 bit default key
 SHA384 384 bit default key
 SHA256 256 bit default key

PKI, Certificates, and OpenSSL

[147]

 SHA224 224 bit default key
 SHA1 160 bit default key
 RIPEMD160 160 bit default key
 MD5 128 bit default key

How it works…
When OpenVPN starts the cryptographics libraries are loaded and initialized. Only at that
point are the available encryption algorithms and HMAC algorithms known. Both OpenSSL
and PolarSSL provide a mechanism for retrieving the list of available algorithms, which
OpenVPN uses for both the --show-ciphers and the --show-digests options.

This recipe shows that the PolarSSL/mbed-TLS library does not support all of the
algorithms that OpenSSL does. When you need to support a PolarSSL-built version of
OpenVPN (like the OpenVPN Connect clients for Android and iOS) then you can use only
ciphers or digests (--auth parameter) which are supported by both crypto libraries.

There's more…
Apart from the data channel cipher and HMAC algorithms, there is one more set of
available algorithms that can be listed. This is the set of TLS algorithms that can be used for
encrypting and authenticating the control channel. In order to list the set of TLS parameters,
use the following command:

 openvpn --show-tls

AEAD Ciphers
Starting with OpenVPN 2.4, a new set of ciphers is supported. These ciphers are known as
AEAD ciphers, which stands for Authenticated Encryption with Associated Data. These
ciphers combine encryption with authentication, thereby removing the need for a separate
HMAC algorithm and thus providing increased performance. Both OpenSSL 1.0+ and
mbed-TLS 1.3+ support these ciphers. With OpenVPN 2.4+, the list of ciphers will include:

AES-128-GCM
AES-192-GCM
AES-256-GCM

PKI, Certificates, and OpenSSL

[148]

Encryption speed
Another major difference between OpenSSL and PolarSSL is the encryption/decryption
speed of the algorithms. OpenSSL included hand-tuned assembly routines for maximum
encryption speed, especially for the AES algorithms on newer Intel CPUs. However, the
encryption speed is not the most important factor when determining the throughput of an
OpenVPN network, as we will see in Chapter 8, Performance Tuning.

Pushing ciphers
Another new feature of OpenVPN 2.4+ is the ability to “push” a cipher or HMAC algorithm
from the server to the client. This makes it much easier to switch encryption or HMAC
authentication algorithms, provided that all clients are using OpenVPN 2.4. This recipe
provides a setup for explicitly pushing a cipher, as well as an explanation of the new cipher
negotiation protocol.

Getting ready
This recipe uses the PKI files created in the first recipe from Chapter 2, Client-server IP-only
Networks. For this recipe, the server computer was running CentOS 6 Linux and OpenVPN
2.4.0. The client was running Fedora 22 Linux and OpenVPN 2.4.0. For the server, keep the
server configuration file basic-udp-server.conf from the Server-side routing recipe in
Chapter 2, Client-server IP-only Networks. For the Windows client, keep the corresponding
client configuration file basic-udp-client.ovpn, from the Using an ifconfig-pool block
recipe in Chapter 2, Client-server IP-only Networks.

How to do it…
Modify the server configuration file, basic-udp-server.conf, by adding the1.
following lines:

 cipher aes-256-gcm
 push "cipher aes-256-gcm"

Then save it as example4-10-server.conf.

Start the server:2.

 [root@server]# openvpn --config example4-10-server.conf

https://cdp.packtpub.com/openvpncookbooksecondedition/wp-admin/post.php?post=36&action=edit#post_391
https://cdp.packtpub.com/openvpncookbooksecondedition/wp-admin/post.php?post=36&action=edit#post_391
https://cdp.packtpub.com/openvpncookbooksecondedition/wp-admin/post.php?post=36&action=edit#post_391

PKI, Certificates, and OpenSSL

[149]

Start the client using the “standard” configuration file but with verbose logging:3.

 [root@client]# openvpn --config basic-udp-client.conf --
 verb 4
 Data Channel Encrypt: Cipher 'BF-CBC' initialized with 128 bit
 key
 Data Channel Encrypt: Using 160 bit message hash 'SHA1' for
 HMAC authentication
 Data Channel Decrypt: Cipher 'BF-CBC' initialized with 128 bit
 key
 Data Channel Decrypt: Using 160 bit message hash 'SHA1' for
 HMAC authentication
 Control Channel: TLSv1.2, cipher TLSv1/SSLv3 ECDHE-RSA-AES256-
 GCM-SHA384, 2048 bit RSA
 [...]
 OPTIONS IMPORT: data channel crypto options modified
 [...]
 Data Channel Encrypt: Cipher 'AES-256-GCM' initialized with 256
 bit key
 Data Channel Decrypt: Cipher 'AES-256-GCM' initialized with 256
 bit key

The output showing that OpenVPN is now using an AES-256 cipher is shown
in bold face.

Verify that we can reach the server using the ping command:4.

 [client]$ ping -c 4 10.200.0.1
 PING 10.200.0.1 (10.200.0.1) 56(84) bytes of data.
 64 bytes from 10.200.0.1: icmp_seq=1 ttl=64 time=9.23 ms
 64 bytes from 10.200.0.1: icmp_seq=2 ttl=64 time=8.78 ms
 64 bytes from 10.200.0.1: icmp_seq=3 ttl=64 time=10.0 ms
 64 bytes from 10.200.0.1: icmp_seq=4 ttl=64 time=9.00 ms
 --- 10.200.0.1 ping statistics ---
 4 packets transmitted, 4 received, 0% packet loss, time 3004ms
 rtt min/avg/max/mdev = 8.780/9.259/10.022/0.468 ms

How it works…
Pushing a cipher is now just as simple as pushing other OpenVPN options. Versions prior
to 2.4 did not support this, however. This allows VPN administrators to change the
encryption parameters used without having to modify all (remote) client configuration files.

PKI, Certificates, and OpenSSL

[150]

There's more…
Starting with OpenVPN 2.4 a new cipher negotiation protocol is introduced. At startup, the
client and server will check whether both sides support the new GCM encryption protocols.
The strongest cipher from this list is then chosen as the cipher. If no match is found, then
OpenVPN reverts to the default BlowFish (BF-CBC) cipher, to ensure backward
compatibility.

This feature can be tuned using the new directives ncp-ciphers and disable-ncp. The
first directive specifies the list of ciphers to negotiate, whereas the second directive turns off
cipher negotiation altogether.

When explicitly pushing a cipher from the server to the client you can only specify a cipher
from the NCP cipher list. The default NCP cipher list is AES-256-GCM:AES-128-CGM:BF-
CBC.

ccp-ciphers
push "auth SHA512"

Future enhancements
It is expected that future enhancements of this new feature will be:

A separate control channel HMAC algorithm so that you can switch the data
channel algorithm independently
The ability to set a “per-client” encryption cipher, allowing you to support
different ciphers for different platforms and clients

Elliptic curve support
In version 2.4 of OpenVPN support was added for using elliptic curve (EC) certificates
instead of the more common RSA type certificates. Elliptic curve cryptography (ECC)
provides a fast method for encrypting and authenticating a secure connection, but are not
widely used yet. In part, this is due to some patenting issues. As most modern OpenSSL
libraries provide ECC support, however, OpenVPN can also use EC certificates. The main
advantage of ECC is that you can provide smaller keys to achieve the same level of security
than with the more common RSA and DSA type encryption. This will result in a better VPN
performance without sacrificing security. As we will see in this recipe, OpenVPN's control
channel can be authenticated using an EC algorithm. The data channel is still authenticated
using a non-EC HMAC algorithm, such as SHA1.

PKI, Certificates, and OpenSSL

[151]

Getting ready
For this recipe, the server computer was running CentOS 6 Linux and OpenVPN 2.4.0. The
client was running Fedora 22 Linux and OpenVPN 2.4.0.

How to do it…
We first need to generate a new EC-based Certificate Authority:1.

 $ export KEY_CN=
 $ export KEY_OU=
 $ export KEY_NAME=
 $ export OPENSSL_CONF=/etc/openvpn/cookbook/openssl-
 1.0.0.cnf
 $ openssl ecparam -out cakey_temp.pem \
 -name sect571k1 -text -genkey
 $ openssl ec -in cakey_temp.pem -out ec-ca.key -aes256
 $ openssl req -new -x509 -out ec-ca.crt -key ec-ca.key
 -days 3650 -sha512 -extensions v3_ca
 -subj "/C=US/O=Cookbook 2.4/CN=Elliptic Curve CA"

This will result in an ec-ca.crt and ec-ca.key file using the sect571k1
elliptic curve that we will use to sign the EC-based client and server
certificates.

Next, generate the new EC server certificate:2.

 $ openssl req -nodes -sha512 -newkey ec:ec-ca.crt
 -new -days 400 -out ec-server.req
 -keyout ec-server.key
 -subj "/C=US/O=Cookbook 2.4/CN=ecserver"
 $ chmod 600 ec-server.key
 $ openssl x509 -req
 -extfile $OPENSSL_CONF
 -extensions server
 -out ec-server.crt -sha512 -CA ec-ca.crt
 -CAkey ec-ca.key -in ec-server.req
 -set_serial $RANDOM

This will result in an ec-server.crt and ec-server.key file.

Similarly, generate the new EC client certificate:3.

 $ openssl req -nodes -sha512
 -newkey ec:ec-ca.crt

PKI, Certificates, and OpenSSL

[152]

 -new -days 400
 -out ec-client.req -keyout ec-client.key
 -subj "/C=US/O=Cookbook 2.4/CN=ecclient"
 $ chmod 600 ec-client.key
 $ openssl x509 -req -extfile $OPENSSL_CONF
 -extensions usr_cert
 -out ec-client.crt -sha512 -CA ec-ca.crt
 -CAkey ec-ca.key -in ec-client.req
 -set_serial $RANDOM

This will result in an ec-client.crt and ec-client.key file.

Create the server configuration file:4.

 proto udp
 port 1194
 dev tun
 server 10.200.0.0 255.255.255.0

 ca /etc/openvpn/cookbook/ec-ca.crt
 cert /etc/openvpn/cookbook/ec-server.crt
 key /etc/openvpn/cookbook/ec-server.key
 dh /etc/openvpn/cookbook/dh2048.pem

Save it as example4-11-server.conf.

Start the server:5.

 [root@server]# openvpn --config example4-11-server.conf

Next, create the client configuration file:6.

 client
 proto udp
 remote openvpnserver.example.com
 port 1194
 dev tun
 nobind

 ca /etc/openvpn/cookbook/ec-ca.crt
 cert /etc/openvpn/cookbook/ec-client.crt
 key /etc/openvpn/cookbook/ec-client.key
 verb 4

Then save it as example4-11-client.conf.

PKI, Certificates, and OpenSSL

[153]

Transfer the files such as ec-ca.crt, ec-client.crt, and ec-client.key to7.
the client machine using a secure channel.
Finally, start the client:8.

 [root@client]# openvpn --config example4-11-client.conf

And observe the chosen control channel cipher:

 Control Channel: TLSv1.2, cipher TLSv1/SSLv3 ECDHE-ECDSA-
 AES256-GCM-SHA384

This shows that the control channel is protected using an ECDSA-based
cipher.

How it works…
By generating an EC-based Certificate Authority and by using EC-based certificates
OpenVPN can now support elliptic curve cryptography on the control channel. The data
channel is still protected using the default cipher BF-CBC (Blowfish) and the default HMAC
algorithm SHA1.

It should be noted that with RSA-based certificates the control channel cipher looks
remarkably similar:

Control Channel: TLSv1.2, cipher TLSv1/SSLv3 ECDHE-RSA-AES256-GCM-SHA384,
2048 bit RSA

It is not the “ECDHE” part which proves that ECC is used, but “ECDSA”.

There's more…
It is also possible to choose different ECDH “curves”. This is done by first listing the
available ECDH curves on the OpenVPN server:

 [root@server]# openvpn --show-curves
 Available Elliptic curves:
 [...]
 secp112r1
 secp112r2
 secp521r1
 prime192v1
 prime192v2
 [...]

PKI, Certificates, and OpenSSL

[154]

And then by adding the option to the server configuration file:

 ecdh-curve secp521r1

Elliptic curve support
Not all Linux distributions provide an OpenSSL library that supports elliptic curve
cryptography out of the box. Notably RedHat-based and RedHat-derived distributions,
such as RedHat Enterprise Linux, CentOS and Fedora explicitly disable ECC support.
RedHat cites patent issues as the reason, but the “default” OpenSSL library ships with full
ECC support.

As the Linux distributions used throughout this book are CentOS and Fedora, a custom
build of the OpenSSL 1.0.2 library was made especially for this recipe.

5
Scripting and Plugins

In this chapter, we will cover the following recipes:

Using a client-side up/down script
Using a client-connect script
Using a learn-address script
Using a tls-verify script
Using an auth-user-pass-verify script
Script order
Script security and logging
Scripting and IPv6
Using the down-root plugin
Using the PAM authentication plugin

Introduction
One of the most powerful features of OpenVPN is its scripting capability and the ability to
extend OpenVPN itself through the use of plugins. Using client-side scripting, the
connection process can be tailored to the site-specific needs, such as setting up advanced
routing options, adding firewall rules or mapping network drives. With server-side
scripting, it is possible to assign a custom IP address to different clients, or to extend the
authentication process by adding an extra username and password check. Plugins are very
useful when integrating OpenVPN authentication into existing authentication frameworks,
such as PAM, LDAP, or even Active Directory.

In this chapter, the focus will be on scripting, both at the client side and at the server side,
and on a few often-used plugins.

Scripting and Plugins

[156]

Using a client-side up/down script
In this recipe, we will use very simple up and down scripts on the client side to show how
OpenVPN calls these scripts. By logging messages to a file, as well as the environment
variables, we can easily see which information OpenVPN provides to the up and down
scripts.

Getting ready
Set up the client and server certificates using the Setting up the public and private keys recipe
from Chapter 2, Client-server IP-only Networks. For this recipe, the server computer was
running Fedora 22 Linux and OpenVPN 2.3.10. The client was running Windows 7 64 bit
and OpenVPN 2.3.10. Keep the server configuration file, basic-udp-server.conf, from
the Server-side routing recipe, from Chapter 2, Client-server IP-only Networks.

How to do it…
Start the server:1.

 [root@server]# openvpn --config basic-udp-server.conf

Create the client configuration file:2.

 client
 proto udp
 remote openvpnserver.example.com
 port 1194
 dev tun
 nobind

 ca "c:/program files/openvpn/config/ca.crt"
 cert "c:/program files/openvpn/config/client2.crt"
 key "c:/program files/openvpn/config/client2.key"
 tls-auth "c:/program files/openvpn/config/ta.key"" 1

 remote-cert-tls server
 script-security 2
 up "c:\\program\ files\\openvpn\\scripts\\updown.bat"
 down "c:\\program\ files\\openvpn\\scripts\\updown.bat"

https://cdp.packtpub.com/openvpncookbooksecondedition/wp-admin/post.php?post=54&action=edit#post_391

Scripting and Plugins

[157]

Save the file as example5-1.ovpn. Note the backslashes: when specifying
the ca, cert, key, and tls-auth directives, forward slashes can be used, but
not for the up and down scripts!

Next, on the Windows client, create the batch file updown.bat batch file in the3.
 C:\Program Files\OpenVPN\scripts directory:

 @echo off
 echo === BEGIN '%script_type%' script === >>
 c:\temp\openvpn.log
 echo Script name: [%0] >> c:\temp\openvpn.log
 echo Command line argument 1: [%1] >> c:\temp\openvpn.log
 echo Command line argument 2: [%2] >> c:\temp\openvpn.log
 echo Command line argument 3: [%3] >> c:\temp\openvpn.log
 echo Command line argument 4: [%4] >> c:\temp\openvpn.log
 echo Command line argument 5: [%5] >> c:\temp\openvpn.log
 echo Command line argument 6: [%6] >> c:\temp\openvpn.log
 echo Command line argument 7: [%7] >> c:\temp\openvpn.log
 echo Command line argument 8: [%8] >> c:\temp\openvpn.log
 echo Command line argument 9: [%9] >> c:\temp\openvpn.log
 set >> c:\temp\openvpn.log
 echo === END '%script_type%' script === >>
 c:\temp\openvpn.log

Finally, start the OpenVPN client:4.

After the client successfully connects to the OpenVPN server, the c:\temp\openvpn.log
log file will contain an output similar to the following:

=== BEGIN 'up' script ===
Script name: ["c:\program files\openvpn\scripts\updown.bat"]
Command line argument 1: [Local Area Connection 2]
Command line argument 2: [1500]
Command line argument 3: [1541]
Command line argument 4: [10.200.0.2]

Scripting and Plugins

[158]

Command line argument 5: [255.255.255.0]

Command line argument 6: [init]
Command line argument 7: []
Command line argument 8: []
Command line argument 9: []
...
script_type=up
[dump of environment variables]
...
=== END 'up' script ===

When the client disconnects from the server, the script is called again, with the exact same
command-line parameters, but now the script_type is set to down.

Note that the first command-line argument contains the name of the TUN device. On Linux
and Mac OS systems, this will generally be tun0 or tun1, but on Windows platforms, it is
the actual name of the TAP-Win32 adapter.

How it works…
After the initial connection is made with the OpenVPN server, but before the VPN is fully
established, the OpenVPN client calls the up script. If the up script returns with an exit code
not equal to zero, the connection sequence is aborted.

Similarly, when the connection is shut down the down script is executed after the VPN
connection has been stopped.

Note the use of the double backslashes (\\) in the up and down directives: OpenVPN
translates the backslash character internally and hence it needs to be specified twice. The
backslash between c:\\program and files is required as otherwise OpenVPN cannot
find the up and down scripts without it.

There's more…
In this section, we will see some more advanced tricks when using the up and down scripts,
including a sample script to verify the remote hostname of a VPN server.

Scripting and Plugins

[159]

Environment variables
The script used in this recipe merely writes out all the environment variables to a file. These
environment variables contain useful information about the remote server, such as the
common_name certificate. An extension to this script would be to check whether the
 common_name certificate matches the remote hostname. The IP address of the remote
hostname is available as trusted_ip.

Calling the down script before the connection
terminates
The down script is executed after the actual connection to the OpenVPN server has been
stopped. It is also possible to execute the script during the disconnect phase before the
connection to the server is dropped. To do this, add the following directive to the client
configuration file:

down-pre

Advanced – verify the remote hostname
A more advanced usage of an up script would be to verify that the remote hostname
matches the remote IP address, similar to the way that a web browser verifies the address of
secure websites. On Linux systems, this can easily be done using a shell script as an up
script:

#!/bin/bash

reverse DNS lookup
server_name=`host $untrusted_ip | \
 sed -n 's/.*name pointer \(.*\)\./\1/p'
if ["$server_name" != "$common_name"]
then
 echo "Server certificate does not match hostname."
 echo "Aborting"
 exit 1
fi

But on Windows, this is trickier to achieve without resorting to tools such as PowerShell or
Cygwin.

Scripting and Plugins

[160]

Using a client-connect script
This recipe will demonstrate how to set up a client-connect script that gets executed on the
server side when a new client connects. Similarly, we can specify a client-disconnect
script that is executed when a client disconnects from the server. Client-connect and client-
disconnect scripts can be used for several purposes:

Extra authentication
Opening and closing firewall ports
Assigning specific IP address to special clients
Writing out connection-specific configuration lines for a client

In this recipe, we will use a client-connect script to disable client access to the client with
a client2 certificate between 10 p.m. (or 22:00 hours) and 6 a.m. During other hours, a
static IP is assigned to this client.

Getting ready
Install OpenVPN 2.3 or higher on two computers. Make sure that the computers are
connected over a network. Set up the client and server certificates using the first recipe from
Chapter 2, Client-server IP-only Networks. For this recipe, the server computer was running
Fedora 22 Linux and OpenVPN 2.3.10. The client was running Windows 7 64 bit and
OpenVPN 2.3.10. Keep the server configuration file, basic-udp-server.conf, from
the Server-side routing recipe, from Chapter 2, Client-server IP-only Networks, at hand. For the
client, keep the client configuration file, basic-udp-client.ovpn, from the Using an
ifconfig-pool block recipe from Chapter 2, Client-server IP-only Networks, at hand.

How to do it…
Append the following lines to the basic-udp-server.conf server1.
configuration file:

 script-security 2
 client-connect /etc/openvpn/cookbook/example5-2-connect.sh

Save it as example5-2-server.conf.2.

https://cdp.packtpub.com/openvpncookbooksecondedition/wp-admin/post.php?post=54&action=edit#post_391
https://cdp.packtpub.com/openvpncookbooksecondedition/wp-admin/post.php?post=54&action=edit#post_391
https://cdp.packtpub.com/openvpncookbooksecondedition/wp-admin/post.php?post=54&action=edit#post_391

Scripting and Plugins

[161]

Next, create the connect script:3.

 #!/bin/bash

 if ["x$common_name" = "xclient2"]
 then
 hour= /bin/date +"%H"
 if [$hour -lt 6 -o $hour -gt 22]
 then
 echo "disable" > $1
 else
 echo "ifconfig-push 10.200.0.200 255.255.255.0"
 fi
 fi

Save this file as example5-2-connect.sh.4.
Make sure that the script is executable:5.

 [root@server]# chmod 755 example5-2-connect.sh

Start the server:6.

 [root@server]# openvpn --config example5-2-server.conf

Start the OpenVPN client:7.

If the client is started after 6 am and before 10 p.m., the connection will be8.
established successfully. Otherwise, the client log file will show lines similar to
the following:

 us=70083 SENT CONTROL [openvpnserver]: 'PUSH_REQUEST'
 (status=1)

Scripting and Plugins

[162]

Also, the server log will more clearly state the reason for the connection
refusal:

 client2/192.168.3.22:57870 MULTI: client has been rejected due
 to 'disable' directive

How it works…
When a client connects, the OpenVPN server executes the client-connect script with
several environment variable sets that are related to the client connecting. The script writes
out two lines to the connect-specific configuration file, which is passed as the first and only
parameter to the client-connect script. This configuration file is then processed by the
OpenVPN server as if it's a normal configuration file. The two possible lines that we use
are disable and ifconfig-push 10.200.0.200 255.255.255.0.

The first option disables a client from connecting. The second option pushes a pre-defined
IP to the client.

There's more…
In this section, we focus on client-disconnect and the many environment variables that
are available to all OpenVPN scripts.

Pitfall in using ifconfig-push
The client-connect script used here did not check whether the IP address that was
assigned using the ifconfig-push 10.200.0.200 255.255.255.0 command was
actually available. If many clients connect to the server, then this IP address will also be
assigned from the pool of IP addresses that is formed as a result of the server
10.200.0.0 255.255.255.0 statement.

When assigning static IP addresses to a client, it is best to assign them from a special subnet.

The client-disconnect scripts
A client-disconnect script can be specified using the following:

client-disconnect /etc/openvpn/cookbook/disconnect.sh

Scripting and Plugins

[163]

This script is executed when the client disconnects from the server. Be aware that when a
client first disconnects and explicit-exit-notify is not specified on the client side, then
the OpenVPN server will first try to reconnect several times to the client. If a client does not
respond after several attempts, then the client-disconnect script will be executed.
Depending on the server configuration, this might be several minutes after the client has
actually disconnected. When using TCP connections, it is not needed to specify explicit-
exit-notify, as the client is disconnected immediately when the TCP connection stops.

Environment variables
There is a multitude of environment variables available inside a client-connect and client-
disconnect script. It is very instructive to write a client-connect script that does a little
more than the following:

#!/bin.bash
env >> /tmp/log

Also, similar to the up and down script, is the script_type environment variable that
contains the type of script as configured in the server configuration file. This gives the
server administrator the option to write a single script for both client-connect
and client-disconnect.

Absolute paths
Note that an absolute path is used for the script. Relative paths are allowed, but especially
for the OpenVPN server, it is more secure to use absolute paths. Assuming that the
OpenVPN server is always started in the same directory is a bad security practice. An
alternative is to use the following:

 cd /etc/openvpn/cookcook
 client-connect example5-2-connect.sh

Using a learn-address script
This recipe will demonstrate how to set up a learn-address script that is executed on the
server side when there is a change in the address of a connecting client. Learn-address
scripts can be used to dynamically set up firewalling rules for specific clients or to adjust
routing tables.

Scripting and Plugins

[164]

In this recipe, we will use a learn-address script to open up a firewall and to set up
masquerading for a client. When the client disconnects, the firewall is closed again and
the iptables masquerading rule is removed.

Getting ready
Install OpenVPN 2.3 or higher on two computers. Make sure that the computers are
connected over a network. Set up the client and server certificates using the first recipe from
Chapter 2, Client-server IP-only Networks. For this recipe, the server computer was running
Fedora 22 Linux and OpenVPN 2.3.10, and the client was running Windows 7 64 bit and
OpenVPN 2.3.10. For the client, keep the client configuration file, basic-udp-
client.ovpn, from the Using an ifconfig-pool block recipe, from Chapter 2, Client-server IP-
only Networks.

How to do it…
Create the server configuration file:1.

 proto udp
 port 1194
 dev tun

 server 10.200.0.0 255.255.255.0

 ca /etc/openvpn/cookbook/ca.crt
 cert /etc/openvpn/cookbook/server.crt
 key /etc/openvpn/cookbook/server.key
 dh /etc/openvpn/cookbook/dh2048.pem
 tls-auth /etc/openvpn/cookbook/ta.key 0

 persist-key
 persist-tun
 keepalive 10 60

 topology subnet

 daemon
 log-append /var/log/openvpn.log
 script-security 2
 learn-address /etc/openvpn/cookbook/example5-3-learn-address.sh
 push "redirect-gateway def1"

https://cdp.packtpub.com/openvpncookbooksecondedition/wp-admin/post.php?post=54&action=edit#post_391
https://cdp.packtpub.com/openvpncookbooksecondedition/wp-admin/post.php?post=54&action=edit#post_391

Scripting and Plugins

[165]

Save it as example5-3-server.conf. Note that this server configuration file2.
does not have the lines user nobody and group nobody (nor group nogroup).

Next, create the learn-address script:3.

 #!/bin/bash

 # $1 = action (add, update, delete)
 # $2 = IP or MAC
 # $3 = client_common name

 if ["$1" = "add"]
 then
 /sbin/iptables -I FORWARD -i tun0 -s $2 -j ACCEPT
 /sbin/iptables -I FORWARD -o tun0 -d $2 -j ACCEPT
 /sbin/iptables -t nat -I POSTROUTING -s $2 -o wlan0 -j
 MASQUERADE
 elif ["$1" = "delete"]
 then
 /sbin/iptables -D FORWARD -i tun0 -s $2 -j ACCEPT
 /sbin/iptables -D FORWARD -o tun0 -d $2 -j ACCEPT
 /sbin/iptables -t nat -D POSTROUTING -s $2 -o wlan0 -j
 MASQUERADE
 fi

Save this file as example5-3-learn-address.sh.4.
Make sure that the script is executable and start the OpenVPN server:5.

 [root@server]# chmod 755 example5-3-learn-address.sh
 [root@server]# openvpn --config example5-3-server.conf

Start the client using the Windows GUI using the basic configuration file:6.

Scripting and Plugins

[166]

After the client connects to the server, check the iptables firewall rules on the7.
server:

 [root@server]# iptables -L FORWARD -n -v
 Chain FORWARD (policy ACCEPT 4612K packets, 1761M bytes)
 pkts bytes target prot opt in out source
 destination
 0 0 ACCEPT all -- * tun0 0.0.0.0/0
 10.200.0.2
 0 0 ACCEPT all -- tun0 * 10.200.0.2
 0.0.0.0/0

 [root@server]# iptables -t nat -L POSTROUTING -n -v
 Chain POSTROUTING (policy ACCEPT 336K packets, 20M bytes)
 pkts bytes target prot opt in out source
 destination
 0 0 MASQUERADE all -- * wlan0 10.200.0.2
 0.0.0.0/0

Disconnect the client, wait for a few minutes, and then verify that the iptables8.
rules have been removed.

How it works…
When a client connects to the OpenVPN server or disconnects from it, the OpenVPN server
executes the learn-address script with several command-line arguments:

$1: Action (add, update, delete).
$2: IP or MAC. For tun-based networks, this is the client IP address. For tap-
based networks, this is the client (virtual) MAC address.
$3: client_common name.

In this recipe, the learn-address script is used to open up the firewall for the connecting
client and to set up the masquerading rules for the client so that the clients can reach the
other machines on the server-side LAN.

There's more…
In the following section, some details of the use of the user nobody directive and
the update action of the learn-address script are given.

Scripting and Plugins

[167]

User nobody
As stated earlier, this server configuration does not include the following lines:

user nobody
group nobody

Or, on some Linux distributions, it can be as follows:

group
nogroup

If we had added these lines, then the OpenVPN server process would be running as
user nobody. This user does not have the required rights to open and close firewall ports
using iptables, hence they were removed in this example.

The update action
The learn-address script is also called when the OpenVPN server detects an address
change on the client side. This can happen most often in a TAP-based network when an
external DHCP server is used. The learn-address script can then adjust routing tables or
firewalling rules based on the new client IP address, using the update action.

Another method to generate a learn-address update action is by triggering a soft-reset
of the server; for example, by sending a USR1 signal to the server process. This will cause all
clients to reconnect, this time triggering an update action.

Using a tls-verify script
OpenVPN has several layers in which the credentials of a connecting client are verified. It is
even possible to add a custom layer to the verification process by specifying a tls-verify
script. In this recipe, we will demonstrate how such a script can be used to allow access only
for a particular certificate.

Scripting and Plugins

[168]

Getting ready
Install OpenVPN 2.3 or higher on two computers. Make sure that the computers are
connected over a network. Set up the client and server certificates using the Setting up the
public and private keys recipe from Chapter 2, Client-server IP-only Networks. For this recipe,
the server computer was running Fedora 22 Linux and OpenVPN 2.3.10. The client was
running Windows 7 64 bit and OpenVPN 2.3.10. For the client, keep the client configuration
file, basic-udp-client.ovpn, from the Using an ifconfig-pool block recipe, from Chapter
2, Client-server IP-only Networks .

How to do it…
Create the server configuration file:1.

 proto udp
 port 1194
 dev tun

 server 10.200.0.0 255.255.255.0

 ca /etc/openvpn/cookbook/ca.crt
 cert /etc/openvpn/cookbook/server.crt
 key /etc/openvpn/cookbook/server.key
 dh /etc/openvpn/cookbook/dh2048.pem
 tls-auth /etc/openvpn/cookbook/ta.key 0

 persist-key
 persist-tun
 keepalive 10 60

 topology subnet

 user nobody
 group nobody # nogroup on some distros
 daemon
 log-append /var/log/openvpn.log

 script-security 2
 tls-verify /etc/openvpn/cookbook/example5-4-tls-verify.sh

Save it as example5-4-server.conf.2.

https://cdp.packtpub.com/openvpncookbooksecondedition/wp-admin/post.php?post=54&action=edit#post_391
https://cdp.packtpub.com/openvpncookbooksecondedition/wp-admin/post.php?post=54&action=edit#post_391
https://cdp.packtpub.com/openvpncookbooksecondedition/wp-admin/post.php?post=54&action=edit#post_391

Scripting and Plugins

[169]

Next, create the tls-verify script:3.

 #!/bin/bash

 [$# -lt 2] && exit 1

 # if the depth is non-zero , continue processing
 ["$1" -ne 0] && exit 0

 allowed_cns=`sed 's/ /_/g' $0.allowed`
 for i in $allowed_cns
 do
 ["$2" = "$i"] && exit 0
 done
 # catch-all
 exit 1

Save this file as example5-4-tls-verify.sh.4.
Make sure that the script is executable:5.

 [root@server]# chmod 755 example5-4-tls-verify.sh

Finally, create the list of allowed certificates:6.

 [root@server]# echo "/C=US/O=Cookbook 2.4/CN=client1" > \
 /etc/openvpn/cookbook/example5-4-tls-verify.sh.allowed

Note that this is a one-line command.

Start the OpenVPN server:7.

 [root@server]# openvpn --config example5-4-server.conf

Start the client with the Windows GUI using the basic configuration file:8.

The client should be able to connect normally.

Scripting and Plugins

[170]

Now, on the OpenVPN server, remove9.
the /etc/openvpn/cookbook/example5-4-tls-verify.sh.allowed file and
reconnect. This time the server log will show the following:

 CN not found in /etc/openvpn/cookbook/example5-4-tls-
 verify.sh.allowed, denying access
 ... openvpnclient1:9007 TLS_ERROR: BIO read tls_read_plaintext
 error: error:140890B2:SSL
 routines:SSL3_GET_CLIENT_CERTIFICATE:no certificate returned
 ... openvpnclient1:9007 TLS Error: TLS object -> incoming
 plaintext read error
 ... openvpnclient1:9007 TLS Error: TLS handshake failed

This means that the client is denied access by the OpenVPN server.

How it works…
When a client connects to the OpenVPN server, the tls-verify script is executed several
times to verify the entire certificate chain of the connecting client. In this recipe, we look for
the end-user certificate, which is the equivalent of the client1.crt file. When this end-
user certificate is found in the example5-4-tls-verify.sh.allowed file, the script
returns 0, indicating a successful verification. If it is not found, a message is printed to the
OpenVPN log and the script returns 1. The OpenVPN server then denies the access to this
particular client.

There's more…
In this recipe, we focus only on the end-user certificate using a simple lookup table. Of
course, this could also have been achieved in many other ways (for example, by using a
client-config-dir file). With a tls-verify script, it is also possible to disallow all the
certificates from a particular certificate authority (CA).

Scripting and Plugins

[171]

In more complex setups, where client certificates can be signed by many different CAs, it is
sometimes very useful to temporarily refuse access to all the certificates from a particular
CA. For example, to deny access to all certificates that are signed with the CA certificate
with the subject name “Cookbook 2.4 CA” from Chapter 2, Client-server IP-only Networks,
the following script could be used:

#!/bin/bash

[$# -lt 2] && exit 1
CA=`echo $2 | sed -n 's/.*\/CN=\(.*\)\/.*/\1/p'`
["$CA" = "Cookbook 2.4 CA"] && exit 1

Using an auth-user-pass-verify script
Other than certificates and private keys, OpenVPN also offers the option to use a username
and password mechanism for verifying client access. In this recipe, we will demonstrate
how to set up an auth-user-pass-verify script, which is executed on the server side
when a client connects. This script can be used to look up a user in a database or file and
can also be used to verify that the right password was specified.

Getting ready
Install OpenVPN 2.3 or higher on two computers. Make sure that the computers are
connected over a network. Set up the client and server certificates using the first recipe from
Chapter 2, Client-server IP-only Networks. For this recipe, the server computer was running
CentOS 6 Linux and OpenVPN 2.3.10, and the client was running Fedora 22 and OpenVPN
2.3.10. For the server, keep the server configuration file, basic-udp-server.conf, from
the Server-side routing recipe, from Chapter 2, Client-server IP-only Networks.

How to do it…
Append a line to the server configuration file, basic-udp-server.conf:1.

 script-security 2
 auth-user-pass-verify /etc/openvpn/cookbook/example5-5-aupv.sh
 via-file

Note that the last line is a single line. Save it as example5-5-server.conf.

https://cdp.packtpub.com/openvpncookbooksecondedition/wp-admin/post.php?post=54&action=edit#post_391
https://cdp.packtpub.com/openvpncookbooksecondedition/wp-admin/post.php?post=54&action=edit#post_391
https://cdp.packtpub.com/openvpncookbooksecondedition/wp-admin/post.php?post=54&action=edit#post_391

Scripting and Plugins

[172]

Create the auth-user-pass-verify script:2.

 #!/bin/bash

 # the username+password is stored in a temporary file
 # pointed to by $1
 username=`head -1 $1`
 password=`tail -1 $1`

 if grep "$username:$password" $0.passwd > /dev/null 2>&1
 then
 exit 0
 else
 if grep "$username" $0.passwd > /dev/null 2>&1
 then
 echo "auth-user-pass-verify: Wrong password entered for
 user '$username'"
 else
 echo "auth-user-pass-verify: Unknown user '$username'"
 fi
 exit 1
 fi

Save it as example5-5-aupv.sh.3.
Set up a (very unsafe!) password file:4.

 [server]$ cd /etc/openvpn/cookbook
 [server]$ echo "cookbook:koobcook" > example5-5-
 aupv.sh.passwd

Make sure that the auth-user-pass-verify script is executable, then start the5.
server:

 [root@server]#$ chmod 755 example5-5-aupv.sh
 [root@server]# openvpn --config example5-5-server.conf

Next, create the client configuration file:6.

 client
 proto udp
 remote openvpnserver.example.com
 port 1194

 dev tun
 nobind

 ca /etc/openvpn/cookbook/ca.crt

Scripting and Plugins

[173]

 cert /etc/openvpn/cookbook/client1.crt
 key /etc/openvpn/cookbook/client1.key
 tls-auth /etc/openvpn/cookbook/ta.key 1

 remote-cert-tls server
 auth-user-pass

Save it as example5-5-client.conf.7.
Start the client:8.

 [root@client]# openvpn --config example5-5-client.conf

First, the OpenVPN client will ask for the username and password:9.

 Enter Auth Username: cookbook
 Enter Auth Password: koobcook

Then, if the correct password is entered, the connection is established as normal.10.
Next, try to reconnect using a different username:11.

 Enter Auth Username: janjust
 Enter Auth Password: whatever

The server log will now show the following:12.

 auth-user-pass-verify: Unknown user 'janjust'
 ... openvpnclient:50834 TLS Auth Error: Auth Username/Password
 verification failed for peer

And the client is now refused access.

How it works…
The OpenVPN client first prompts the user for the Auth username and password. Note that
the password is sent to the server over a secure channel, but the password itself is not
hashed or encrypted. The server-side auth-user-pass-verify script is passed the
username and password in a file on two lines. The script then looks up the username in its
password file and verifies whether the right password was specified. If so, then the script
exits with exit code 0, indicating success. Otherwise, the exit code of 1 is returned, causing
the server to abort the client connection.

Scripting and Plugins

[174]

There's more…
In the following section, we'll see some details about how a password can be specified and
can be passed from the server to the auth-user-pass-verify script.

Specifying the username and password in a file on the
client
OpenVPN has the option to specify the username and password in a file on the client. For
this, OpenVPN needs to be compiled with a special flag, which is enabled by default
starting with OpenVPN 2.3.

Note that it is unsafe to allow the password to be stored on the client (in plaintext format!).

Passing the password via environment variables
In this recipe, we used the following:

auth-user-pass-verify example5-5-aupv.sh via-file

This configured the OpenVPN server to pass the client-supplied username and password
via a temporary file. This temporary file is accessible only to the server process, and hence,
this is a safe mechanism to pass the encrypted password to the auth-user-pass-verify
script.

It is also possible to pass the username and password to the auth-user-pass-verify
script via environment variables:

auth-user-pass-verify example5-5-aupv.sh via-env

The advantage of this is that no extra files need to be created. The downside is that passing
a password via plaintext and via the environment is slightly less secure: it is easier (but not
easy!) to snoop the environment of another process than it is to read a secure file owned by
another user.

Script order
With all the possible scripts that can be configured on the OpenVPN server, it becomes
important to determine the order in which these scripts are executed. In this recipe, we will
find out what the order is, as well as the command-line parameters for each of these scripts.

Scripting and Plugins

[175]

Getting ready
Install OpenVPN 2.3 or higher on two computers. Make sure that the computers are
connected over a network. Set up the client and server certificates using the first recipe from
Chapter 2, Client-server IP-only Networks. For this recipe, the server computer was running
CentSO 6 Linux and OpenVPN 2.3.10., and the client was running Fedora 22 and OpenVPN
2.3.10. For the server, keep the server configuration file, basic-udp-server.conf, from
the Server-side routing recipe, from Chapter 2, Client-server IP-only Networks. For the client,
keep the client configuration file from the previous recipe at hand.

How to do it…
Append the following lines to the server configuration file, basic-udp-1.
server.conf:

 script-security 2
 cd /etc/openvpn/cookbook
 up example5-6-script.sh
 route-up example5-6-script.sh
 down example5-6-script.sh
 client-connect example5-7-script.sh
 client-disconnect example5-6-script.sh
 learn-address example5-6-script.sh
 tls-verify example5-6-script.sh
 auth-user-pass-verify example5-6-script.sh via-env

Save it as example5-6-server.conf.2.
Create the following script:3.

 #!/bin/bash

 exec >> /tmp/example5-6.log 2>&1
 date +"%H:%M:%S: START $script_type script ==="
 echo "argv = $0 $@"
 echo "user = `id -un`/`id -gn`"
 date +"%H:%M:%S: END $script_type script ==="

Save it as example5-6-script.sh.4.
Make sure that the script is executable and then start the server:5.

 [root@server]# chmod 755 example5-6-script.sh
 [root@server]# openvpn --config example5-6-server.conf

https://cdp.packtpub.com/openvpncookbooksecondedition/wp-admin/post.php?post=54&action=edit#post_391
https://cdp.packtpub.com/openvpncookbooksecondedition/wp-admin/post.php?post=54&action=edit#post_391

Scripting and Plugins

[176]

Next, start the client:6.

 [root@client]# openvpn --config example5-5-client.conf

The Auth username and password can be chosen arbitrarily, as they are not
used.

After successfully connecting to the server, disconnect the client and wait for a7.
few minutes until the server recognizes that the client has disconnected. Now,
stop the OpenVPN server as well.

A log file will be created in /tmp/example5-6.log, parts of which are
shown here:

 13:34:45: START up script ===
 13:34:45: START route-up script ===
 13:36:26: START tls-verify script ===
 18:36:26: START tls-verify script ===
 18:36:27: START user-pass-verify script ===
 18:36:27: START client-connect script ===
 18:36:27: START learn-address script ===
 argv = example5-6-script.sh add 10.200.0.2 client1
 18:37:14: START client-disconnect script ===
 18:37:20: START learn-address script ===
 argv = example5-6-script.sh delete 10.200.0.2
 18:37:20: START down script ===

How it works…
There are many script hooks built into OpenVPN. When the OpenVPN server starts up and
when a client connects and then disconnects, these scripts are executed one by one. The
order (for OpenVPN 2.3) is as follows:

The up script as user root.
The route-up script as user root; afterwards, root privileges are dropped and
OpenVPN switches to the user nobody as specified in the server configuration.
The tls-verify script. The CA certificate that was used to sign the client
certificate is passed for verification.
The tls-verify script. The client certificate itself is passed.
The user-pass-verify script.
The client-connect script.
The learn-address script with the action, add.

Scripting and Plugins

[177]

At this point, the client has successfully established a VPN connection. Now, when the
client disconnects:

The client-disconnect script
The learn-address script with the action, delete

And when the server shuts down:

The down command; note that this is run as the user nobody!

There's more…
When writing scripts, it is very important to keep the script execution time in mind. The
design of OpenVPN 2 is very monolithic: everything (except plugins, which we will come to
later in this chapter) is run under a single thread. This means that while a script is
executing, the whole OpenVPN server is temporarily unavailable for all other clients: the
routing of packets stops, other clients cannot connect or disconnect, and even the
management interface will not respond. So, it is very important to ensure that all the server-
side scripts execute very quickly.

This design flaw has been recognized, but it is not expected that there will be a major
change until the arrival of OpenVPN 3.

Script security and logging
One of the major differences between OpenVPN 2.0 and later versions is related to the
security when running scripts. With OpenVPN 2.0, all scripts were executed using a
system call and the entire set of server environment variables was passed to each script.
Starting with OpenVPN 2.1, the script-security configuration directive is introduced
and the default for executing scripts is now the execv call, which is more secure. Also, it is
advisable to log output of your scripts for security reasons. With script logging output,
including timestamps, it becomes much easier to track down problems and possible
security incidents. Starting with OpenVPN 2.3, it is no longer possible to add the system
option to the script-security configuration directive.

In this recipe, we will focus on the different options for the script-security
configuration directive and on the methods to ease the logging of script output.

Scripting and Plugins

[178]

Getting ready
Install OpenVPN 2.3 or higher on two computers. Make sure that the computers are
connected over a network. Set up the client and server certificates using the first recipe from
Chapter 2, Client-server IP-only Networks. For this recipe, the server computer was running
CentSO 6 Linux and OpenVPN 2.3.10, and the client was running Fedora 22 and OpenVPN
2.3.10. For the server, keep the server configuration file, basic-udp-server.conf, from
the Server-side routing recipe, from Chapter 2, Client-server IP-only Networks.

How to do it…
Start the OpenVPN server using the configuration file from the Using a client-side1.
up/down script recipe:

 [root@server]# openvpn --config basic-udp-server.conf

Create the client configuration file:2.

 client
 proto udp
 remote openvpnserver.example.com
 port 1194

 dev tun
 nobind

 ca /etc/openvpn/cookbook/ca.crt
 cert /etc/openvpn/cookbook/client1.crt
 key /etc/openvpn/cookbook/client1.key
 tls-auth /etc/openvpn/cookbook/ta.key 1

 remote-cert-tls server
 up "/etc/openvpn/cookbook/example5-7-up.sh arg1 arg2"

Save it as example5-7-client.conf. Notice the lack of the script-security3.
directive.
Create the up script:4.

 #!/bin/bash

 exec >> /etc/openvpn/cookbook/example5-7.log 2>&1
 date +"%H:%M:%S: START $script_type script ==="
 echo "argv = [$0] [$1] [$2] [$3] [$4]"

https://cdp.packtpub.com/openvpncookbooksecondedition/wp-admin/post.php?post=54&action=edit#post_391
https://cdp.packtpub.com/openvpncookbooksecondedition/wp-admin/post.php?post=54&action=edit#post_391

Scripting and Plugins

[179]

 pstree $PPID
 date +"%H:%M:%S: END $script_type script ==="

Save it as example5-7-up.sh and make sure that it is executable.5.
Start the OpenVPN client:6.

 [client]$ openvpn --config example5-7-client.conf

The client appears to connect successfully until the up script needs to be7.
executed:

 ... /etc/openvpn/cookbook/example5-7-up.sh [arguments]
 ... WARNING: External program may not be called unless '--
 script-security 2' or higher is enabled. See --help text or
 man page for detailed info.
 ... WARNING: Failed running command (--up/--down): external
 program fork failed
 ... Exiting due to fatal error

When we repeat the preceding with an extra command-line parameter, --8.
script-security 2, the client can connect successfully:

 [client]$ openvpn --config example5-7-client.conf \
 --script-security 2

The /etc/openvpn/cookbook/example5-7.log log file now shows the following:

05:25:33: START up script ===
argv = [/etc/openvpn/cookbook/example5-7-up.sh] [argument1] [argument2]
[tun0] [1500]
openvpn---example5-7-up.s---pstree
05:25:33: END up script ===

If we repeat this preceding exercise using --script-security 3, we would get a similar
output.

Scripting and Plugins

[180]

How it works…
In order to execute the scripts on either the client or the server, the directive, script-
security 2 (or 3) must be specified; otherwise, OpenVPN 2.1 or higher will refuse to start.
The following parameters can be specified for the script-security directive:

0: This parameter specifies that no external programs can be called. This means
that OpenVPN cannot successfully start up, except on Microsoft Windows under
certain circumstances.
1: This parameter specifies that only built-in external programs (such
as /sbin/ifconfig, and /sbin/ip on Linux, and netsh.exe, and route.exe
on Windows) can be called.
2: This parameter specifies that built-ins and scripts can be called.
3: This is the same as 2, but now here, passwords can be passed to scripts via
environment variables as well.

There's more…
There are subtle differences between running scripts on Linux/NetBSD/Mac OS and on
Windows. On Windows, the system call, CreateProcess , is used by default. This makes it
impossible to pass extra parameters to some scripts, such as the up script, as the entire text
enclosed with quotes after the up directive is considered as the name of the executable or
script.

Scripting and IPv6
Now that IPv6 addresses are more common, it is instructive to show how IPv6 addresses
are passed from the server to client-side scripts. Basically, all environment variables that
existed for IPv4 addresses also exist for IPv6, simply by appending or inserting _ipv6 to
the environment variable. In this recipe, we will show you how to process these
environment variables.

Scripting and Plugins

[181]

Getting ready
Install OpenVPN 2.3 or higher on two computers. Make sure that the computers are
connected over a network. Set up the client and server certificates using the first recipe from
Chapter 2, Client-server IP-only Networks. For this recipe, the server computer was running
CentOS 6 Linux and OpenVPN 2.3.10., and the client was running Fedora 22 and OpenVPN
2.3.10. For the server, keep the server configuration file, basic-udp-server.conf, from
the Server-side routing recipe, from Chapter 2, Client-server IP-only Networks.

How to do it…
Append two lines to the server configuration file, basic-udp-server.conf:1.

 push "route-ipv6 2001:610:120::111:0:1/96"
 push "route-ipv6 2001:610:120::222:0:1/96"

Save it as example5-8-server.conf.2.
Start the server:3.

 [root@server]# openvpn --config example5-8-server.conf

Next, create the client configuration file:4.

 client
 proto udp
 remote openvpnserver.example.com
 port 1194

 dev tun
 nobind

 ca /etc/openvpn/cookbook/ca.crt
 cert /etc/openvpn/cookbook/client1.crt
 key /etc/openvpn/cookbook/client1.key
 tls-auth /etc/openvpn/cookbook/ta.key 1

 remote-cert-tls server
 script-security 2
 up "/etc/openvpn/cookbook/example5-8.sh"

 route-up "/etc/openvpn/cookbook/example5-8.sh"

https://cdp.packtpub.com/openvpncookbooksecondedition/wp-admin/post.php?post=54&action=edit#post_391
https://cdp.packtpub.com/openvpncookbooksecondedition/wp-admin/post.php?post=54&action=edit#post_391

Scripting and Plugins

[182]

Save it as example5-8-client.conf.5.
Create the following script:6.

 #!/bin/bash

 exec >> /tmp/example5-10.log 2>&1
 date +"%H:%M:%S: START $script_type script ==="
 export | grep ipv6
 date +"%H:%M:%S: END $script_type script ==="

Save it as example5-8-script.sh.7.
Make sure that the example5-8.sh script is executable, and then start the client:8.

 [root@client]# chmod 755 example5-8.sh
 [root@client]# openvpn --config example5-8-client.conf

After the client has is connected, check the client-side log9.
file, /tmp/example5-8.log:

 16:19:58: START up script ===

 declare -x ifconfig_ipv6_local="2001:610:120::200:0:1001"
 declare -x ifconfig_ipv6_netbits="112"
 declare -x ifconfig_ipv6_remote="2001:610:120::200:0:2"
 declare -x route_ipv6_gateway_1="2001:610:120::200:0:2"
 declare -x route_ipv6_gateway_2="2001:610:120::200:0:2"
 declare -x route_ipv6_network_1="2001:610:120::111:0:1/96"
 declare -x route_ipv6_network_2="2001:610:120::222:0:1/96"
 16:19:58: END up script ===
 16:19:58: START route-up script ===
 declare -x ifconfig_ipv6_local="2001:610:120::200:0:1001"
 declare -x ifconfig_ipv6_netbits="112"
 declare -x ifconfig_ipv6_remote="2001:610:120::200:0:2"
 declare -x route_ipv6_gateway_1="2001:610:120::200:0:2"
 declare -x route_ipv6_gateway_2="2001:610:120::200:0:2"
 declare -x route_ipv6_network_1="2001:610:120::111:0:1/96"
 declare -x route_ipv6_network_2="2001:610:120::222:0:1/96"
 16:19:58: END route-up script ===

Scripting and Plugins

[183]

How it works…
The OpenVPN server assigns an IPv6 address to the client and also pushes out two IPv6
routes to the client using the push "route-ipv6 ..." directive. The client picks up these
directives and passes them on to the up and route-up scripts. These scripts only show the
environment variables that have ipv6 in them, which gives a good overview of the IPv6
settings that are available to scripts and plugins.

There's more…
Be careful when passing IPv6 routes to clients that contain the IPv6 address of the server
itself–these routes can take precedence over an existing route to the server, causing the VPN
connection to stall.

Using the down-root plugin
OpenVPN supports a plugin architecture, where external plugins can be used to extend the
functionality of OpenVPN. Plugins are special modules or libraries that adhere to the
OpenVPN Plugin API. One of these plugins is the down-root plugin, which is available
only on Linux. This allows the user to run specified commands as a user root plugin when
OpenVPN shuts down. Normally, the OpenVPN process drops root privileges (if the --
user directive is used) for security reasons. While this is a good security measure, it makes
it difficult to undo some of the actions that an up script can perform, which is run as a
user root plugin. For this, the down-root plugin was developed. This recipe will
demonstrate how the down-root plugin can be used to remove a file that was created by
an up script.

Getting ready
Set up the client and server certificates using the Setting up public and private keys recipe from
Chapter 2, Client-server IP-only Networks. For this recipe, the server computer was running
CentOS 6 Linux and OpenVPN 2.3.10. No client computer was required.

https://cdp.packtpub.com/openvpncookbooksecondedition/wp-admin/post.php?post=54&action=edit#post_391

Scripting and Plugins

[184]

How to do it…
Create the server configuration file:1.

 proto udp
 port 1194
 dev tun

 server 10.200.0.0 255.255.255.0

 ca /etc/openvpn/cookbook/ca.crt
 cert /etc/openvpn/cookbook/server.crt
 key /etc/openvpn/cookbook/server.key
 dh /etc/openvpn/cookbook/dh2048.pem
 tls-auth /etc/openvpn/cookbook/ta.key 0

 persist-key
 persist-tun
 keepalive 10 60

 topology subnet

 user nobody
 group nobody # nogroup on some distros

 daemon
 log-append /var/log/openvpn.log

 script-security 2
 cd /etc/openvpn/cookbook
 up "example5-9.sh"
 plugin /usr/lib64/openvpn/plugin/lib/openvpn-down-root.so
 "./example5-9.sh --down"

 suppress-timestamps
 verb 5

Save it as example5-9-server.conf.2.
Next, create the up script, which we will also use for the down-root plugin:3.

 #!/bin/sh
 if ["$script_type" = "up"]
 then
 touch /tmp/example5-9.tempfile
 fi
 if ["$1" = "--down"]

Scripting and Plugins

[185]

 then
 rm /tmp/example5-9.tempfile
 fi

Save it as example5-9.sh and make sure that it is executable.4.
Start the OpenVPN server:5.

 [root@server]# openvpn --config example5-9-server.conf

The server log file will now show the following:

 PLUGIN_CALL: POST /usr/lib64/openvpn/plugin/lib/openvpn-down-
 root.so/PLUGIN_UP status=0
 example5-9.sh tun0 1500 1541 10.200.0.1 10.200.0.2 init

This indicates the plugin has started. The fact that there were no error codes
right after the up script was executed indicates that it ran successfully.

Verify that the /tmp/example5-9.tempfile file was created on the server.6.
Next, stop the server. The server log will now show the following:7.

 PLUGIN_CALL: POST /usr/lib64/openvpn/plugin/lib/openvpn-down-
 root.so/PLUGIN_DOWN status=0
 PLUGIN_CLOSE: /usr/lib64/openvpn/plugin/lib/openvpn-down-
 root.so

Verify that the /tmp/example5-9.tempfile file has been removed.8.

How it works…
The down-root plugin is registered at system startup when the OpenVPN server process is
still running with root privileges. Plugins are spawned off in a separate thread, meaning
that when the main OpenVPN process drops its root privileges, the plugins will still have
full root access. When OpenVPN shuts down, the plugin is called and it removes the file
created by the user root plugin when the server started.

Scripting and Plugins

[186]

Here is an interesting part of the server log file is:

/sbin/ifconfig tun0 0.0.0.0
SIOCSIFADDR: Permission denied
SIOCSIFFLAGS: Permission denied
Linux ip addr del failed: external program exited with error status: 255
PLUGIN_CALL: POST /usr/lib64/openvpn/plugin/lib/openvpn-down-
root.so/PLUGIN_DOWN status=0
PLUGIN_CLOSE: /usr/lib64/openvpn/plugin/lib/openvpn-down-root.so

This indicates that the OpenVPN process was indeed not capable of running the command
/sbin/ifconfig tun0 0.0.0.0, proving that root privileges had been successfully
dropped. The plugin was then called, which did have root privileges, so that it could
remove the root-owned file in /tmp.

Note that it is required to specify a path starting with ./ for the script that the plugin runs.
If the leading ./ is not specified on Linux or Mac OS, then OpenVPN will not be able to
find the script that the plugin needs to run, as the current directory (.) normally is not part
of the PATH environment variable.

Also note that the up script is called with the script_type environment variable set but
that this is not true for plugins. To overcome this, an extra parameter was added so that the
same script could be used as both the up and down-root scripts.

There's more…
Plugins are supported on Linux, Net/FreeBSD, and on Windows. The following script
callbacks can be intercepted using a plugin:

up

down

route-up

ipchange

tls-verify

auth-user-pass-verify

client-connect

client-disconnect

learn-address

Scripting and Plugins

[187]

See also
The next recipe, Using the PAM authentication plugin, which explains how to use
an OpenVPN plugin to authenticate remote VPN clients

Using the PAM authentication plugin
A very useful plugin for OpenVPN is a plugin to validate a username using the
Linux/UNIX PAM authentication system. PAM stands for pluggable authentication
modules and is a very modular system for allowing users access to system resources. It is
used by most modern Linux and UNIX variants, offering a very flexible and extendible
system for authenticating and authorizing users. In this recipe, we will use the PAM
authentication plugin as a replacement of an auth-user-pass-verify script to validate a
remote user's credentials against the system PAM configuration.

Getting ready
Install OpenVPN 2.3 or higher on two computers. Make sure that the computers are
connected over a network. Set up the client and server certificates using the first recipe from
Chapter 2, Client-server IP-only Networks. For this recipe, the server computer was running
CentOS 6 Linux and OpenVPN 2.3.11. The client was running Fedora 22 Linux and
OpenVPN 2.3.11. For the client, keep the client configuration file, example5-5-
client.conf, from the Using an auth-user-pass-verify script recipe at hand.

How to do it…
Create the server configuration file:1.

 proto udp
 port 1194
 dev tun

 server 10.200.0.0 255.255.255.0

 ca /etc/openvpn/cookbook/ca.crt
 cert /etc/openvpn/cookbook/server.crt
 key /etc/openvpn/cookbook/server.key
 dh /etc/openvpn/cookbook/dh2048.pem

https://cdp.packtpub.com/openvpncookbooksecondedition/wp-admin/post.php?post=54&action=edit#post_391

Scripting and Plugins

[188]

 tls-auth /etc/openvpn/cookbook/ta.key 0

 persist-key
 persist-tun
 keepalive 10 60

 topology subnet

 user nobody
 group nobody # nogroup on some distros

 daemon
 log-append /var/log/openvpn.log

 verb 5
 suppress-timestamps

 plugin /usr/lib64/openvpn/plugins/openvpn-plugin-auth-pam.so
 "login login USERNAME password PASSWORD"

Note that the last line of the server configuration file is a single line. Save it
as: example5-10-server.conf.

Start the OpenVPN server:2.

 [root@server]# openvpn --config example5-10-server.conf

The server log file will now show:

 AUTH-PAM: BACKGROUND: INIT service='login'
 PLUGIN_INIT: POST /usr/lib64/openvpn/plugins/openvpn-plugin-
 auth-pam.so '/usr/lib64/openvpn/plugins/openvpn-plugin-auth-
 pam.so] [login] [login] [USERNAME] [password] [PASSWORD]'
intercepted=PLUGIN_AUTH_USER_PASS_VERIFY

This indicates that the PAM plugin successfully initialized in the
background.

Start the OpenVPN client. OpenVPN will first prompt for the Auth username and3.
password:

 ... OpenVPN 2.3.11 x86_64-redhat-linux-gnu [SSL (OpenSSL)]
 [LZO] [EPOLL] [PKCS11] [MH] [IPv6] built on May 10 2016
 ... library versions: OpenSSL 1.0.1e-fips 11 Feb 2013, LZO 2.08
 Enter Auth Username: ********
 Enter Auth Password: ********

Scripting and Plugins

[189]

On the server used in this recipe, a special user cookbook was created. After typing in the
username and password, the connection to the server is successfully established. The
OpenVPN server log shows the following:

AUTH-PAM: BACKGROUND: received command code: 0
AUTH-PAM: BACKGROUND: USER: cookbook
AUTH-PAM: BACKGROUND: my_conv[0] query='login:' style=2
AUTH-PAM: BACKGROUND: name match found, query/match-string ['login:',
'login'] = 'USERNAME'
AUTH-PAM: BACKGROUND: my_conv[0] query='Password: ' style=1
AUTH-PAM: BACKGROUND: name match found, query/match-string ['Password: ',
'password'] = 'PASSWORD'
... 192.168.3.22:50887 PLUGIN_CALL: POST
/usr/lib64/openvpn/plugins/openvpn-plugin-auth-
pam.so/PLUGIN_AUTH_USER_PASS_VERIFY status=0
... 192.168.3.22:50887 TLS: Username/Password authentication succeeded for
username 'cookbook'

This shows that the user was successfully authenticated using PAM.

How it works…
The PAM authentication plugin intercepts the auth-user-pass-verify callback. When
the OpenVPN client connects and passes along the username and password, the plugin
wakes up. It queries the PAM subsystem by looking at the login module (this is the first
parameter for the openvpn-auth-pam.so file). The other parameters are used by
the auth-pam plugin to know which input to expect from the PAM subsystem:

login USERNAME password PASSWORD

The PAM login subsystem will ask for the username by presenting the login prompt and
will ask for the password by presenting the password prompt. The auth-pam plugin uses
this information to know where to fill in the username (USERNAME) and password
(PASSWORD).

After the user has been successfully authenticated by the PAM subsystem, the connection is
established.

Scripting and Plugins

[190]

There's more…
It would also have been possible to authenticate a user using an auth-user-pass-verify
script, which queries the PAM subsystem. There are two major advantages to using the
PAM plugin for this:

It is not required to use the script-security directive at all.
The plugin method is much faster and far more scalable. When many users try to
connect to the OpenVPN server at the same time, the VPN performance would be
greatly affected when using an auth-user-pass-verify script, as for each user
connection, a separate process needs to be started, during which the OpenVPN's
main thread is installed.

See also
The previous recipe, Using the down-root plugin, in which the basics of using
OpenVPN plugins are explained

6
Troubleshooting OpenVPN -

Configurations
In this chapter, we will cover the following recipes:

Cipher mismatches
TUN versus TAP mismatches
Compression mismatches
Key mismatches
Troubleshooting MTU and tun-mtu issues
Troubleshooting network connectivity
Troubleshooting client-config-dir issues
Troubleshooting multiple remote issues
Troubleshooting bridging issues
How to read the OpenVPN log files

Introduction
The topic of this chapter and the next is troubleshooting OpenVPN. This chapter will focus
on troubleshooting OpenVPN misconfigurations, whereas the next chapter will focus on the
all-too-common routing issues that occur when setting up a VPN.

The recipes in these chapters will therefore deal first with breaking things. We will then
provide the tools on how to find and solve the configuration errors. Some of the
configuration directives used in this chapter have not been demonstrated before, so even if
you are not interested in breaking things, this chapter will still be insightful.

Troubleshooting OpenVPN - Configurations

[192]

Cipher mismatches
In this recipe, we will change the cryptographic ciphers that OpenVPN uses. Initially, we
will change the cipher only on the client side, which will cause the initialization of the VPN
connection to fail. The primary purpose of this recipe is to show the error messages that
appear, not to explore the different types of ciphers that OpenVPN supports.

Getting ready
Set up the client and server certificates using the first recipe from Chapter 2, Client-server
IP-only Networks. For this recipe, the server computer was running CentOS 6 Linux and
OpenVPN 2.3.11, and the client was running Windows 7 64 bit and OpenVPN 2.3.10. Keep
the configuration file, basic-udp-server.conf, from the Server-side routing recipe from
Chapter 2, Client-server IP-only Networks, as well as the client configuration file, basic-
udp-client.conf.

How to do it…
Start the server using the configuration file, basic-udp-server.conf:1.

 [root@server]# openvpn --config basic-udp-server.conf

Next, create the client configuration file by appending a line to the basic-udp-2.
client.conf file:

 cipher CAST5-CBC

Save it as example6-1-client.conf.

Start the client, after which the following message will appear in the client log:3.

 [root@client]# openvpn --config example6-1-client.conf
 ... WARNING: 'cipher' is used inconsistently, local='cipher
 CAST5-CBC'', remote='cipher BF-CBC''
 ... [openvpnserver] Peer Connection Initiated with server-
 ip:1194
 ... TUN/TAP device tun0 opened
 ... /sbin/ip link set dev tun0 up mtu 1500
 ... /sbin/ip addr add dev tun0 10.200.0.2/24 broadcast
 10.200.0.255
 ... Initialization Sequence Completed

https://cdp.packtpub.com/openvpncookbooksecondedition/wp-admin/post.php?post=198&action=edit#post_391

Troubleshooting OpenVPN - Configurations

[193]

 ... Authenticate/Decrypt packet error: cipher final failed

And, similarly, on the server side:

 ... client-ip:52461 WARNING: 'cipher' is used inconsistently,
 local='cipher BF-CBC'', remote='cipher CAST5-CBC''
 ... client-ip:52461 [client1] Peer Connection Initiated with
 client1:52461
 ... client1/client-ip:52461 Authenticate/Decrypt packet error:
 cipher final failed
 ... client1/client-ip:52461 Authenticate/Decrypt packet error:
 cipher final failed

The connection will not be successfully established, but it will also not be
disconnected immediately.

How it works…
During the connection phase, the client and the server negotiate several parameters needed
to secure the connection. One of the most important parameters in this phase is the
encryption cipher, which is used to encrypt and decrypt all the messages. If the client and
server are using different ciphers, then they are simply not capable of talking to each other.

By adding the following configuration directive to the server configuration file, the client
and the server can communicate again:

cipher CAST5-CBC

There's more…
OpenVPN supports quite a few ciphers, although support for some of the ciphers is still
experimental. To view the list of supported ciphers, type:

 $ openvpn --show-ciphers

This will list all ciphers with both variables and fixed cipher length. The ciphers with
variable cipher length are very well supported by OpenVPN, the others can sometimes lead
to unpredictable results.

Troubleshooting OpenVPN - Configurations

[194]

Pushable ciphers
Starting with version 2.4, OpenVPN clients support the option to process a cipher pushed
from the server to the client. Thus, if all clients are running OpenVPN 2.4 or later it becomes
much easier to change the encryption cipher in an existing deployment.

TUN versus TAP mismatches
A common mistake when setting up a VPN based on OpenVPN is the type of adapter that
is used. If the server is configured to use a TUN-style network but a client is configured to
use a TAP-style interface, then the VPN connection will fail. In this recipe, we will show
what is typically seen when this common configuration error is made.

Getting ready
Set up the client and server certificates using the first recipe from Chapter 2, Client-server
IP-only Networks. For this recipe, the server computer was running CentOS 6 Linux and
OpenVPN 2.3.11. The client was running Fedora 22 Linux and OpenVPN 2.3.11. Keep the
configuration file, basic-udp-server.conf, from the Server-side routing recipe from
Chapter 2, Client-server IP-only Networks.

How to do it…
Start the server using the configuration file, basic-udp-server.conf:1.

 [root@server]# openvpn --config basic-udp-server.conf

Next, create the client configuration:2.

 client
 proto udp
 remote openvpnserver.example.com
 port 1194

 dev tap
 nobind

 remote-cert-tls server
 tls-auth /etc/openvpn/cookbook/ta.key 1
 ca /etc/openvpn/cookbook/ca.crt

https://cdp.packtpub.com/openvpncookbooksecondedition/wp-admin/post.php?post=198&action=edit#post_391
https://cdp.packtpub.com/openvpncookbooksecondedition/wp-admin/post.php?post=198&action=edit#post_391

Troubleshooting OpenVPN - Configurations

[195]

 cert /etc/openvpn/cookbook/client1.crt
 key /etc/openvpn/cookbook/client1.key

Save it asexample6-2-client.conf.

Start the client:3.

 [root@client]# openvpn --config example6-2-client.conf

The client log will show the following:

 ... WARNING: 'dev-type' is used inconsistently, local='dev-type
 tap'', remote='dev-type tun''
 ... WARNING: 'link-mtu' is used inconsistently, local='link-mtu
 1573'', remote='link-mtu 1541''
 ... WARNING: 'tun-mtu' is used inconsistently, local='tun-mtu
 1532'', remote='tun-mtu 1500''
 ... [openvpnserver] Peer Connection Initiated with server-
 ip:1194
 ... TUN/TAP device tap0 opened
 ... /sbin/ip link set dev tap0 up mtu 1500
 ... /sbin/ip addr add dev tap0 10.200.0.2/24 broadcast
 10.200.0.255
 ... Initialization Sequence Completed

At this point, you can try pinging the server, but it will respond with an
error:

 [client]$ ping 10.200.0.1
 PING 10.200.0.1 (10.200.0.1) 56(84) bytes of data.
 From 10.200.0.2 icmp_seq=2 Destination Host Unreachable
 From 10.200.0.2 icmp_seq=3 Destination Host Unreachable
 From 10.200.0.2 icmp_seq=4 Destination Host Unreachable

How it works…
A TUN-style interface offers a point-to-point connection over which only TCP/IP traffic can
be tunneled. A TAP-style interface offers the equivalent of an Ethernet interface that
includes extra headers. This allows a user to tunnel other types of traffic over the interface.
When the client and the server are misconfigured, the expected packet size is different:

... WARNING: 'tun-mtu' is used inconsistently, local='tun-mtu 1532'',
remote='tun-mtu 1500''

Troubleshooting OpenVPN - Configurations

[196]

This shows that each packet that is sent through a TAP-style interface is 32- bytes larger
than the packets sent through a TUN-style interface.

By correcting the client configuration, this problem is resolved.

Compression mismatches
OpenVPN supports on-the-fly compression of the traffic that is sent over the VPN tunnel.
This can improve the performance over a slow network line, but it does add a little
overhead. When transferring uncompressible data (such as ZIP files), the performance
actually decreases slightly.

If the compression is enabled on the server but not on the client, then the VPN connection
will fail.

Getting ready
Set up the client and server certificates using the Setting up public and private keys recipe from
Chapter 2, Client-server IP-only Networks. For this recipe, the server computer was running
CentOS 6 Linux and OpenVPN 2.3.11. The client was running Fedora 22 Linux and
OpenVPN 2.3.11. Keep the configuration file, basic-udp-server.conf, from the Server-
side routing recipe from Chapter 2, Client-server IP-only Networks, as well as the client
configuration file, basic-udp-client.conf, at hand.

How to do it…
Append a line to the server configuration file, basic-udp-server.conf:1.

 comp-lzo

Save it as example6-3-server.conf.

Start the server:2.

 [root@server]# openvpn --config example6-3-server.conf

Next, start the client:3.

 [root@client]# openvpn --config basic-udp-client.conf

https://cdp.packtpub.com/openvpncookbooksecondedition/wp-admin/post.php?post=198&action=edit#post_391
https://cdp.packtpub.com/openvpncookbooksecondedition/wp-admin/post.php?post=198&action=edit#post_391

Troubleshooting OpenVPN - Configurations

[197]

The connection will initiate, but when data is sent over the VPN connection,
the following messages will appear:

 Initialization Sequence Completed
 ... write to TUN/TAP : Invalid argument (code=22)
 ... write to TUN/TAP : Invalid argument (code=22)

How it works…
During the connection phase, no compression is used to transfer information between the
client and the server. One of the parameters that is negotiated is the use of compression for
the actual VPN payload. If there is a configuration mismatch between the client and the
server, then both the sides will get confused by the traffic that the other side is sending.

This error can easily be fixed for all the clients by just adding another line:

push "comp-lzo"

Key mismatches
OpenVPN offers extra protection for its TLS control channel in the form of HMAC keys.
These keys are exactly the same as the static “secret” keys used in Chapter 1, Point-to-Point
Networks, for point-to-point style networks. For multi-client style networks, this extra
protection can be enabled using the tls-auth directive. If there is a mismatch between the
client and the server related to this tls-auth key, then the VPN connection will fail to get
initialized.

Getting ready
Set up the client and server certificates using the first recipe from Chapter 2, Client-server
IP-only Networks. For this recipe, the server computer was running CentOS 6 Linux and
OpenVPN 2.3.11. The client was running Fedora 22 Linux and OpenVPN 2.3.11. Keep the
configuration file, basic-udp-server.conf, from the Server-side routing recipe from
Chapter 2, Client-server IP-only Networks.

https://cdp.packtpub.com/openvpncookbooksecondedition/wp-admin/post.php?post=198&action=edit#post_391
https://cdp.packtpub.com/openvpncookbooksecondedition/wp-admin/post.php?post=198&action=edit#post_391

Troubleshooting OpenVPN - Configurations

[198]

How to do it…
Start the server using the configuration file, basic-udp-server.conf:1.

 [root@server]# openvpn --config basic-udp-server.conf

Next, create the client configuration:2.

 client
 proto udp
 remote openvpnserver.example.com
 port 1194

 dev tun
 nobind

 remote-cert-tls server
 tls-auth /etc/openvpn/cookbook/ta.key
 ca /etc/openvpn/cookbook/ca.crt
 cert /etc/openvpn/cookbook/client1.crt
 key /etc/openvpn/cookbook/client1.key

Note the lack of the second parameter for tls-auth. Save it as example6-4-
client.conf file.

Start the client:3.

 [root@client]# openvpn --config example6-4-client.conf

The client log will show no errors, but the connection will not be established
either. In the server log we'll find the following:

 ... Initialization Sequence Completed
 ... Authenticate/Decrypt packet error: packet HMAC
 authentication failed
 ... TLS Error: incoming packet authentication failed from
 client-ip:54454

This shows that the client, client1, is connecting using the wrong tls-
auth parameter and the connection is refused.

Troubleshooting OpenVPN - Configurations

[199]

How it works…
At the very first phase of the connection initialization, the client and the server verify each
other's HMAC keys. If an HMAC key is not configured correctly, then the initialization is
aborted and the connection will fail to establish. As the OpenVPN server is not able to
determine whether the client is simply misconfigured or whether a malicious client is trying
to overload the server, the connection is simply dropped. This causes the client to keep
listening for the traffic from the server until it eventually times out.

In this recipe, the misconfiguration consisted of the missing parameter 1 at the end of the
configuration line:

tls-auth /etc/openvpn/cookbook/ta.key

The second parameter to the tls-auth directive is the direction of the key. Normally, the
following convention is used:

0: from server to client
1: from client to server

This parameter causes OpenVPN to derive its HMAC keys from a different part of the
ta.key file. If the client and server disagree on which parts the HMAC keys are derived
from, the connection cannot be established. Similarly, when the client and server are
deriving the HMAC keys from different ta.key files, the connection can also not be
established.

See also
The Multiple secret keys recipe from Chapter 1, Point-to-Point Networks, in which
the format and usage of the OpenVPN secret keys is explained in detail

Troubleshooting MTU and tun-mtu issues
One of the more advanced features of OpenVPN is the ability to tune the network
parameters of both the TUN (or TAP) adapter and the parameters of the encrypted link
itself. This is a frequent cause of configuration mistakes, leading to low performance or
even the inability to successfully transfer data across the VPN tunnel.

Troubleshooting OpenVPN - Configurations

[200]

This recipe will show what happens if there is an MTU (Maximum Transfer Unit) mismatch
between the client and the server and how this mismatch can cause the VPN tunnel to fail
only under certain circumstances.

Getting ready
Set up the client and server certificates using the first recipe from Chapter 2, Client-server
IP-only Networks. For this recipe, the server computer was running CentOS 6 Linux and
OpenVPN 2.3.11, and the client was running Fedora 22 Linux and OpenVPN 2.3.11. Keep
the client configuration file, basic-udp-client.conf, handy along with the configuration
file, basic-udp-server.conf, from the Server-side routing recipe, from Chapter 2, Client-
server IP-only Networks, as well as the client configuration file basic-udp-client.conf.

How to do it…
Start the server using the configuration file, basic-udp-server.conf:1.

 [root@server]# openvpn --config basic-udp-server.conf

Next, create the client configuration file by appending a line to the basic-udp-2.
client.conf file:

 tun-mtu 1400

Save it as example6-5-client.conf.

Start the client and look at the client log:3.

 [root@client]# openvpn --config example6-5-client.conf
 ... WARNING: 'link-mtu' is used inconsistently, local='link-mtu
 1441'', remote='link-mtu 1541''
 ... WARNING: 'tun-mtu' is used inconsistently, local='tun-mtu
 1400'', remote='tun-mtu 1500''
 ... [openvpnserver] Peer Connection Initiated with server-
 ip:1194
 ... TUN/TAP device tun0 opened
 ... /sbin/ip link set dev tun0 up mtu 1400
 ... /sbin/ip addr add dev tun0 10.200.0.2/24 broadcast
 10.200.0.255
 ... Initialization Sequence Completed

https://cdp.packtpub.com/openvpncookbooksecondedition/wp-admin/post.php?post=198&action=edit#post_391
https://cdp.packtpub.com/openvpncookbooksecondedition/wp-admin/post.php?post=198&action=edit#post_391

Troubleshooting OpenVPN - Configurations

[201]

There are a few warnings when the tunnel comes up, but the connection is
initialized.

It is possible to send traffic over the link, which we can verify using the ping4.
command:

 [client]$ ping -c 2 10.200.0.1
 PING 10.200.0.1 (10.200.0.1) 56(84) bytes of data.
 64 bytes from 10.200.0.1: icmp_seq=1 ttl=64 time=30.6 ms
 64 bytes from 10.200.0.1: icmp_seq=2 ttl=64 time=30.7 ms

However, consider when sending larger packets, for example:5.

 [client]$ ping -s 1450 10.200.0.1

In such a case, the following messages appear in the client log file:

 ... Authenticate/Decrypt packet error: packet HMAC
 authentication failed
 ... Authenticate/Decrypt packet error: packet HMAC
 authentication failed

The same thing will happen if the client tries to download a large file.

How it works…
The MTU determines how large packets can be that are sent over the tunnel without
breaking up (fragmenting) the packet into multiple pieces. If the client and the server
disagree on this MTU size, then the server will send packets to the client that are simply too
large. This causes an HMAC failure (if tls-auth is used, as in this recipe) or the part of the
packet that is too large is thrown away.

There's more…
On the Windows platform, it is not easy to change the MTU setting for the Tap-Win32
adapter that OpenVPN uses. The tun-mtu directive can be specified but the Windows
version of OpenVPN cannot alter the actual MTU setting, as Windows did not support this
until Windows Vista. OpenVPN, however, does not yet have the capability of altering the
MTU size on Windows.

Troubleshooting OpenVPN - Configurations

[202]

See also
Chapter 9, Performance Tuning, which gives some hints and examples on how to
optimize the tun-mtu directive

Troubleshooting network connectivity
This recipe will focus on the type of log messages that are typically seen when the
OpenVPN configurations are fine, but the network connectivity is not. In most cases, this is
due to a firewall blocking access to either the server or the client. In this recipe, we explicitly
block access to the server and then try to connect to it.

Getting ready
Set up the client and server certificates using the first recipe from Chapter 2, Client-server
IP-only Networks. For this recipe, the server computer was running CentOS 6 Linux and
OpenVPN 2.3.11, and the client was running Fedora 22 Linux and OpenVPN 2.3.11. Keep
the client configuration file, basic-udp-client.conf, handy along with the configuration
file, basic-udp-server.conf, from the Server-side routing recipe from Chapter 2, Client-
server IP-only Networks, as well as the client configuration file, basic-udp-client.conf.

How to do it…
Start the server using the configuration file, basic-udp-server.conf:1.

 [root@server]# openvpn --config basic-udp-server.conf

On the server, explicitly block access to OpenVPN using iptables:2.

 [root@server]# iptables -I INPUT -p udp --dport 1194 -j DROP

Next, start the client using the configuration file, basic-udp-client.conf:3.

 [root@client]# openvpn --config basic-udp-client.conf

https://cdp.packtpub.com/openvpncookbooksecondedition/wp-admin/post.php?post=198&action=edit#post_391
https://cdp.packtpub.com/openvpncookbooksecondedition/wp-admin/post.php?post=198&action=edit#post_391

Troubleshooting OpenVPN - Configurations

[203]

The client will try to connect the server using the UDP protocol. After a
while, a timeout will occur because no traffic is getting through and the client
will restart:

 ... TLS Error: TLS key negotiation failed to occur within 60
 seconds (check your network connectivity)
 ... TLS Error: TLS handshake failed
 ... SIGUSR1[soft,tls-error] received, process restarting

Abort the client and stop the server.

How it works…
When OpenVPN is configured to use the default UDP protocol, the client will wait for an
answer from the server for 60 seconds. If no answer was received, the connection is
restarted. As we are explicitly blocking UDP traffic, the timeout occurs and the client is
never able to connect.

The amount of time for which the client waits for the connection to start is controlled using
the following directive:

hand-window N

Here, N is the number of seconds to wait for the initial handshake to complete. The default
value is 60 seconds.

Of course, the connection can be repaired by removing the firewall rule.

There's more…
One of the major differences between the UDP protocol and the TCP protocol is the way
connections are established: every TCP connection is started using a TCP handshake by
both the client and the server. If the handshake fails, then the connection is not established.
There is no need to wait for traffic coming back from the server, as the connection itself is
dropped:

 ... Attempting to establish TCP connection with openvpnserver:1194
[nonblock]
 ... TCP: connect to openvpnserver:1194 failed, will try again in 5
seconds: Connection refused

Troubleshooting OpenVPN - Configurations

[204]

Troubleshooting client-config-dir issues
In this recipe, we will demonstrate how to troubleshoot issues related to the use of
the client-config-dir directive. This directive can be used to specify a directory for so-
called CCD files. CCD files can contain OpenVPN directives to assign a specific IP address
to a client, based on the client's certificate. Experience has shown that it is easy to
misconfigure this directive. In this recipe, we will make one of the common
misconfigurations and then show how to troubleshoot it.

Getting ready
Set up the client and server certificates using the first recipe from Chapter 2, Client-server
IP-only Networks. For this recipe, the server computer was running CentOS 6 Linux and
OpenVPN 2.3.11. The client was running Fedora 22 Linux and OpenVPN 2.3.11. Keep the
client configuration file, basic-udp-client.conf, handy along with the configuration
file, basic-udp-server.conf, from the Server-side routing recipe from Chapter 2, Client-
server IP-only Networks, as well as the client configuration file, basic-udp-client.conf.

How to do it…
Append the following lines to the configuration file, basic-udp-server.conf:1.

 client-config-dir /etc/openvpn/cookbook/clients
 ccd-exclusive

Save it as example6-7-server.conf.

Make sure that the /etc/openvpn/cookbook/clients directory is accessible2.
only to the root:

 [root@server]# chown root /etc/openvpn/cookbook/clients
 [root@server]# chmod 700 /etc/openvpn/cookbook/clients

Start the server:3.

 [root@server]# openvpn --config example6-7-server.conf

Next, start the client using the configuration file, basic-udp-client.conf:4.

 [root@client]# openvpn --config basic-udp-client.conf

https://cdp.packtpub.com/openvpncookbooksecondedition/wp-admin/post.php?post=198&action=edit#post_391
https://cdp.packtpub.com/openvpncookbooksecondedition/wp-admin/post.php?post=198&action=edit#post_391

Troubleshooting OpenVPN - Configurations

[205]

Then, the client will fail to connect with the following message:

... [openvpnserver] Peer Connection Initiated with server-ip:1194

... AUTH: Received AUTH_FAILED control message

The server log file is a bit confusing: first; it mentions that there was a problem reading the
CCD file, client1, but then it states that the client is connected:

... client-ip:45432 TLS Auth Error: --client-config-dir authentication
failed for common name 'client1'
file=''/etc/openvpn/cookbook/clients/client1''
... client-ip:45432 [client1] Peer Connection Initiated with client-
ip:45432

However, the VPN connection has not been properly initiated.

How it works…
The following directives are used by the OpenVPN server to look in the
/etc/openvpn/cookbook/clients directory for a CCD file with the name (CN) of the
client certificate:

client-config-dir /etc/openvpn/cookbook/clients
ccd-exclusive

The purpose of the second directive, ccd-exclusive, is to only allow clients for which a
CCD file is present. If a CCD file for a client is not present, the client will be denied access.
The name of the client certificate is listed in the server log:

... client-ip:45432 TLS Auth Error: --client-config-dir authentication
failed for common name 'client1'

However, it can also be retrieved using the following:

openssl x509 -subject -noout -in client1.crt

Look for the first part starting with /CN= and convert all spaces to underscores.

The OpenVPN server process is running as user nobody. And because we have set very
restrictive permissions on the /etc/openvpn/cookbook/clients directory, this user is
not capable of reading any files in that directory. When the client with
the client1 certificate connects, the OpenVPN server is not capable of reading the CCD
file (even though it might be there). Because of the ccd-exclusive directive, the client is
then denied access.

Troubleshooting OpenVPN - Configurations

[206]

There's more…
In this section, we will explain how to increase the logging verbosity and what some of the
most common client-config-dir mistakes are.

More verbose logging
Increasing the verbosity of logging is often helpful when troubleshooting client-config-
dir issues. With verb 5 and the right permissions, you will see the following log file
entries in the OpenVPN server log:

client1/client-ip:39814 OPTIONS IMPORT: reading client specific options
from: /etc/openvpn/cookbook/clients/client1

If this message is not present in the server log, then it is safe to assume that the CCD file has
not been read.

Other frequent client-config-dir mistakes
There are a few frequent client-config-dir mistakes:

A non-absolute path is used to specify the client-config-dir directive, for
example:

 client-config-dir clients

This might work in some cases, but you have to be very careful when starting
the server or when combining this with directives such as --chroot or --cd.
Especially when the --chroot directive is used, all paths, including the
absolute path, will be relative to the chroot path.

The CCD file itself must be correctly named, without any extension. This
typically tends to confuse Windows users. Look in the server log to see what the
OpenVPN server thinks; the /CN= name is of the client certificate. Also, be aware
that OpenVPN rewrites some characters of the /CN= name, such as spaces. For
the full list of characters that will be remapped, refer to the manual page in
the String types and remapping section.
The CCD file and the full path to it must be readable to the user under which the
OpenVPN server process is running (usually nobody).

Troubleshooting OpenVPN - Configurations

[207]

See also
The Using client-config-dir files recipe from Chapter 2, Client-server IP-only
Networks, which explains the basic usage of client configuration files

Troubleshooting multiple remote issues
In this recipe, we will demonstrate how to troubleshoot issues related to the use of multiple
remote directives. The ability to use multiple remote directives is one of the lesser well-
known features of OpenVPN that has been available since version 2.2. It allows a user to
specify multiple connection profiles to different hosts, different ports, and different
protocols (for example, TCP versus UDP).

When using this directive, there is a pitfall to watch out for when specifying extra directives
elsewhere in the configuration files, or on the command line. In this recipe, we will
demonstrate what this pitfall is.

Getting ready
Set up the client and server certificates using the first recipe from Chapter 2, Client-server
IP-only Networks. For this recipe, the server computer was running CentOS 6 Linux and
OpenVPN 2.3.11, and the client was running Fedora 22 Linux and OpenVPN 2.3.11. Keep
the client configuration file, basic-udp-client.conf, handy along with the configuration
file, basic-udp-server.conf, from the Server-side routing recipe from Chapter 2, Client-
server IP-only Networks, as well as the client configuration file, basic-udp-client.conf.

How to do it…
Start the server using the configuration file, basic-udp-server.conf:1.

 [root@server]# openvpn --config basic-udp-server.conf

Next, create the client configuration:2.

 client
 remote openvpnserver.example.com 1195 udp
 remote openvpnserver.example.com 1196 tcp
 port 1194

https://cdp.packtpub.com/openvpncookbooksecondedition/wp-admin/post.php?post=198&action=edit#post_391
https://cdp.packtpub.com/openvpncookbooksecondedition/wp-admin/post.php?post=198&action=edit#post_391
https://cdp.packtpub.com/openvpncookbooksecondedition/wp-admin/post.php?post=198&action=edit#post_391

Troubleshooting OpenVPN - Configurations

[208]

 dev tun
 nobind

 remote-cert-tls server
 tls-auth /etc/openvpn/cookbook/ta.key 1
 ca /etc/openvpn/cookbook/ca.crt
 cert /etc/openvpn/cookbook/client1.crt
 key /etc/openvpn/cookbook/\client1.key

Note that we are specifying two connection profiles, one to the server using
the UDP protocol, port 1195, and one using the TCP protocol, port 1196.
However, we expect to overrule the port number using the line port 1194.
Save this file as example6-8-client.conf .

Start the client:3.

 [root@client]# openvpn --config example6-8-client.conf

Then, the client will fail to connect with a message:

 ... UDPv4 link local: [undef]
 ... UDPv4 link remote: [AF_INET]server-ip:1195

So, even though we explicitly stated port 1194, the client is still connecting
using protocol UDP, port 1195.

How it works…
When you specify a remote connection entry using:

 remote openvpnserver.example.com 1195 udp

OpenVPN transforms this internally into a connection profile. In general, connection
profiles inherit settings from the global configuration. Anything specified inside a
connection profile overrules whatever is specified globally, even if it is specified later in the
configuration file, or on the command line. Thus, the line port 1194 does not have any
effect and the client attempts to connect using the first (default) remote connection profile,
protocol UDP, and port 1195.

To solve this issue, the port number needs to be modified in the remote line in the
configuration file.

Troubleshooting OpenVPN - Configurations

[209]

There's more…
An alternative way to specify the remote openvpnserver.example.com 1195 udp is by
using a connection block:

<connection>
 remote openvpnserver.example.com
 port 1195
 proto udp
</connection>

However, inside connection blocks, you can specify more directives, as we will see in the
Using connection blocks recipe in Chapter 10, Advanced Configuration.

See also
The Using connection blocks recipe in Chapter 10, Advanced Configuration, which
goes into detail into the usage of connection blocks

Troubleshooting bridging issues
In this recipe, we will demonstrate how to troubleshoot a common issue related to bridging.
OpenVPN bridging can be tricky to configure, as the warning and error messages can be
confusing. In this recipe, we will make one of the common misconfigurations and then
show how to troubleshoot it.

Getting ready
Set up the client and server certificates using the first recipe from Chapter 2, Client-server
IP-only Networks. For this recipe, the server computer was running CentOS 6 Linux and
OpenVPN 2.3.11, and the client was running Fedora 22 Linux and OpenVPN 2.3.11. Keep
the scripts, example3-3-bridge-start and example3-3-bridge-stop, from the
Bridging – Linux recipe from Chapter 3, Client-server Ethernet-style Networks, handy along
with the client configuration file, example-3-2-client2.ovpn, from the Enabling client-to-
client traffic recipe, from Chapter 3, Client-server Ethernet-style Networks.

https://cdp.packtpub.com/openvpncookbooksecondedition/wp-admin/post.php?post=198&action=edit#post_391

Troubleshooting OpenVPN - Configurations

[210]

How to do it…
Create the server configuration file:1.

 proto udp
 port 1194
 dev tap
 server-bridge 192.168.4.65 255.255.255.0 192.168.4.128
 192.168.4.200
 push "route 192.168.4.0 255.255.255.0"

 tls-auth /etc/openvpn/cookbook/ta.key 0
 ca /etc/openvpn/cookbook/ca.crt
 cert /etc/openvpn/cookbook/server.crt
 key /etc/openvpn/cookbook/server.key
 dh /etc/openvpn/cookbook/dh2048.pem

 persist-key
 persist-tun
 keepalive 10 60

 user nobody
 group nobody # use "group nogroup" on some distros

 daemon
 log-append /var/log/openvpn.log

Note that we did not explicitly specify the adapter name (tap0). Save it
as example-6-9-server.conf.

Create the network bridge and verify that it is working:2.

 [root@server]# bash example3-3-bridge-start
 TUN/TAP device tap0 opened
 Persist state set to: ON
 [root@server]# brctl show
 bridge name bridge id STP enabled interfaces
 br0 8000.00219bd2d422 no eth0
 tap0

Start the OpenVPN server:3.

 [root@server]# openvpn --config example6-9-server.conf

Troubleshooting OpenVPN - Configurations

[211]

Start the client:4.

Now, try to reach the server:5.

 [WinClient]C:> ping 192.168.4.65

Even though the connection is established, the client will fail to reach the
server.

Remember to shut down the Ethernet bridge after stopping the OpenVPN
server process.

How it works…
The connection failures in this example are due to the fact that the OpenVPN server opened
a new tap adapter at startup instead of connecting to the bridge. A hint is given in the
server log file:

... TUN/TAP device tap1 opened

When checking the tap interfaces on the server, we see that there are now two tap
interfaces:

 [root@server]# ip addr show
 ...
 39: br0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc noqueue
 state UNKNOWN
 link/ether 00:25:90:c0:3e:d0 brd ff:ff:ff:ff:ff:ff
 inet 192.168.4.65/24 brd 192.168.4.255 scope global br0
 inet6 fe80::225:90ff:fec0:3ed0/64 scope link
 valid_lft forever preferred_lft forever
 40: tap1: <BROADCAST,MULTICAST> mtu 1500 qdisc noop state DOWN qlen
 100
 link/ether ae:9f:3e:ae:93:ba brd ff:ff:ff:ff:ff:ff

Troubleshooting OpenVPN - Configurations

[212]

The second tap interface, tap1, is the one in use by OpenVPN, and it does not have an IP
address assigned!

To solve this issue, the correct tap adapter needs to be specified in the server configuration
file.

See also
The Linux – bridging recipe, from Chapter 3, Client-server Ethernet-style Networks,
which explains in detail how to set up bridging on Linux in detail

How to read the OpenVPN log files
Troubleshooting an OpenVPN setup often comes down to reading and interpreting the
OpenVPN log file correctly. In this recipe, no new features of OpenVPN will be introduced,
but a detailed walk-through of an OpenVPN log file will be given. The setup from the
Troubleshooting MTU and tun-mtu issues recipe earlier in this chapter will be used as a
starting point.

Getting ready
Use the same setup as in the Troubleshooting MTU and tun-mtu issues recipe earlier in this
chapter. For this recipe, the server computer was running CentOS 6 Linux and OpenVPN
2.3.11, and the client was running Fedora 22 Linux and OpenVPN 2.3.11. Keep the
configuration file, basic-udp-server.conf, from the Server-side routing recipe from
Chapter 2, Client-server IP-only Networks. For the client, keep the configuration
file, example6-5-client.conf, from the Troubleshooting MTU and tun-mtu issues recipe at
hand.

How to do it…
Start the server using the configuration file, basic-udp-server.conf:1.

 [root@server]# openvpn --config basic-udp-server.conf

https://cdp.packtpub.com/openvpncookbooksecondedition/wp-admin/post.php?post=198&action=edit#post_391

Troubleshooting OpenVPN - Configurations

[213]

Next, start the client with an increased verbosity setting and without timestamps2.
in the log file:

 [root@client]# openvpn --config example6-5-client.conf \
 --verb 7 --suppress-timestamps

The connection will initiate, but it will not be possible to send large packets.

Trigger an error by typing the following:3.

 [client]$ ping -c 1 10.200.0.1
 [client]$ ping -c 1 -s 1450 10.200.0.1

Abort the client. The log file will have become large quite quickly.4.
Open the log file using a text editor and browse through it. An explanation of the5.
general structure of the log file is given in the next section.

How it works…
The first part of the log file contains the configuration as specified in the configuration file
and from the command-line parameters. This is the section starting with the following line:

Current Parameter Settings:
 config = 'example6-5-client.conf'

It ends with the following line:

OpenVPN 2.3.11 x86_64-redhat-linux-gnu [SSL (OpenSSL)] [LZO] [EPOLL]
[PKCS11] [MH] [IPv6] built on May 10 2016

This section is about 275 lines long depending on the configuration and it contains what
OpenVPN thinks is the configuration. Check this section carefully to make sure that you
agree.

The next interesting section is as follows:

Control Channel Authentication: using '/etc/openvpn/cookbook/ta.key' as a
OpenVPN static key file
Outgoing Control Channel Authentication: Using 160 bit message hash 'SHA1'
for HMAC authentication
Outgoing Control Channel Authentication: HMAC KEY: 51cc24c0 ...
Outgoing Control Channel Authentication: HMAC size=20 ... Incoming Control
Channel Authentication: Using 160 bit ...
Incoming Control Channel Authentication: HMAC KEY: 1c748f91 ...
Incoming Control Channel Authentication: HMAC size=20 ...

Troubleshooting OpenVPN - Configurations

[214]

This part shows that a tls-auth key is read and used and that the two separate HMAC
keys are derived. The keys are actually printed in the log file, so you can reference them
with the output from the server log file. The server incoming key should be the same as the
client outgoing key and vice versa. The misconfiguration from the Key mismatches recipe
earlier in this chapter would have appeared here.

Right after this section is the warning that is the root cause of the misconfiguration from the
Troubleshooting MTU and tun-mtu issues recipe earlier in this chapter:

WARNING: normally if you use --mssfix and/or --fragment, you should also
set --tun-mtu 1500 (currently it is 1400)

Log file messages starting with WARNING should always be given special attention to. In
some cases, they can be ignored, but in this case, it was the root cause of the VPN
connection not working properly.

After this warning comes a whole range of messages of the following form:

UDPv4 link remote: [AF_INET]server-ip:1194
UDPv4 WRITE [42] to [AF_INET]server-ip:1194: P_CONTROL_HARD_RESET_CLIENT_V2
kid=0 pid=[#1] [] pid=0 DATA len=0
UDPv4 READ [54] from [AF_INET]server-ip:1194:
P_CONTROL_HARD_RESET_SERVER_V2 kid=0 pid=[#1] [0] pid=0 DATA len=0
TLS: Initial packet from [AF_INET]server-ip:1194, sid=c483bcc9 a60cc834
PID_TEST [0] [TLS_AUTH-0] [] 0:0 1469290891:1 t=1469290891[0]
r=[0,64,15,0,1] sl=[0,0,64,528]
UDPv4 WRITE [50] to [AF_INET]server-ip:1194: P_ACK_V1 kid=0 pid=[#2] [0
]
UDPv4 WRITE [249] to [AF_INET]server-ip:1194: P_CONTROL_V1 kid=0 pid=[#3]
[] pid=1 DATA len=207

These messages are all part of the initial handshake between the client and the server to
exchange configuration information, encryption keys, and other information for setting up
the VPN connection. Right after this is another hint about the misconfiguration:

WARNING: 'link-mtu' is used inconsistently, local='link-mtu 1441',
remote='link-mtu 1541'
WARNING: 'tun-mtu' is used inconsistently, local='tun-mtu 1400',
remote='tun-mtu 1500'

We skip forward over a lot of TLS_prf messages to come to the end of the connection
handshake:

Control Channel: TLSv1.2, cipher TLSv1/SSLv3 DHE-RSA-AES256-GCM-SHA384,
2048 bit RSA
[openvpnserver] Peer Connection Initiated with [AF_INET]server-ip:1194

Troubleshooting OpenVPN - Configurations

[215]

At this point, the OpenVPN client has established the initial connection with the server and
it is now ready to process the configuration directives pushed by the server, if any:

PUSH: Received control message: 'PUSH_REPLY,route-gateway
10.200.0.1,topology subnet,ping 10,ping-restart 60,ifconfig 10.200.0.2
255.255.255.0'

This is another important line to check for, as it shows what the server has actually pushed
to the client. Verify that this actually matches what you thought the server should push.

After this, the local TUN adapter is opened and initialized and the first packets can begin to
flow.

The first ping command worked fine, as we can see from this part:

TUN READ [84]
...
UDPv4 WRITE [125] to server-ip:1194: P_DATA_V1 kid=0 DATA len=124
UDPv4 READ [125] from server-ip:1194: P_DATA_V1 kid=0 DATA len=124
TLS: tls_pre_decrypt, key_id=0, IP=server-ip:1194
TUN WRITE [84]

The TUN READ is the ping command being read from the TUN interface, followed by a write
over the encrypted channel to the remote server. Notice the difference in packet size: the
packet sent over the encrypted tunnel is 125 bytes, which is 41- bytes larger than the
original packet read from the TUN interface. This exactly matches the difference between
the link-mtu and tun-mtu options as shown earlier in the log file.

Next comes the section where the ping -s 1450 command breaks down. A ping of 1450
bytes cannot be read in one piece if the MTU of the interface is set to 1400, hence two TUN
READS are necessary to capture all data:

TUN READ [1396]
...
UDPv4 WRITE [1437] to server-ip:1194: P_DATA_V1 kid=0 DATA len=1436
TUN READ [102]
...
UDPv4 WRITE [141] to server-ip:1194: P_DATA_V1 kid=0 DATA len=140

Notice that the data is actually sent as two separate packets to the server. This is perfectly
normal behavior, as the packet needs to be fragmented. Calculation of the packet sizes
versus the MTU sizes breaks down in this case, as the second packet is not a complete IP
packet.

Troubleshooting OpenVPN - Configurations

[216]

The server receives the large ping command and sends an equally large reply. As the server
has an MTU setting of 1500, there is no need to fragment the data, so it arrives at the client
as a single packet:

UDPv4 READ [1441] from server-ip:1194: P_DATA_V1 kid=0 DATA len=1440
TLS: tls_pre_decrypt, key_id=0, IP=server-ip:1194
Authenticate/Decrypt packet error: packet HMAC authentication failed

The client, however, is expecting a packet with a maximum size of 1400 bytes. It is not able
to properly decode the larger packet and write out the packet HMAC authentication
failed message.

Finally, when we abort the client, we see an interrupted system call message (in this
case, Ctrl + C was used to abort the client, along with a range of clean-up messages before
the client actually stops):

event_wait : Interrupted system call (code=4)
PID packet_id_free
...
TCP/UDP: Closing socket
Closing TUN/TAP interface
/sbin/ip addr del dev tun0 10.200.0.2/24
PID packet_id_free
SIGINT[hard,] received, process exiting

Consider that the client configuration had included this:

user nobody

Then, we would also have seen messages of this form:

SIOCSIFADDR: Permission denied
SIOCSIFFLAGS: Permission denied
Linux ip addr del failed: external program exited with error status: 255

In this case, these are harmless.

Troubleshooting OpenVPN - Configurations

[217]

There's more…
On UNIX-based operating systems, it is also possible to send the OpenVPN log output via
syslog. This allows a system administrator to effectively manage a large set of computers
using a single system logging interface. To send log messages via syslog, replace the
directive log-append with the following:

syslog [name]

Here, name is an optional parameter to specify the name of the OpenVPN instance in the
syslog log files. This is particularly useful if there are multiple instances of OpenVPN
running on a single host, and they are all using syslog to log their output and error
messages.

7
Troubleshooting OpenVPN -

Routing
 In this chapter, we will cover the following troubleshooting topics:

The missing return route
Missing return routes when iroute is used
All clients function except the OpenVPN endpoints
Source routing
Routing and permissions on Windows
Unable to change Windows network location
Troubleshooting client-to-client traffic routing
Understanding the MULTI: bad source warnings
Failure when redirecting the default gateway

Introduction
The topic of this chapter and the previous one is troubleshooting the OpenVPN. This
chapter focuses on the all-too-common routing issues that occur when setting up a VPN. As
more than half of the questions asked on the openvpn-users mailing list can be traced
back to routing issues, this chapter intends to provide answers to some of the more frequent
routing misconfigurations.

The recipes in these chapters will therefore deal with first, breaking the things, and then,
providing the tools for how to find and solve the configuration errors.

Troubleshooting OpenVPN - Routing

[219]

The missing return route
After setting up OpenVPN successfully for the very first time, it is very common to
misconfigure the network routes for the VPN. In this recipe, we will first set up a basic
TUN-style VPN as is done in Chapter 2, Client-server IP-only Networks. At first, routing will
not work until the right routes are added. The purpose of this recipe is to describe how to
troubleshoot such a routing error.

Getting ready
We use the following network layout:

Set up the client and server certificates using the Setting up the public and private keys recipe
from Chapter 2, Client-server IP-only Networks. For this recipe, the server computer was
running CentOS 6 Linux and OpenVPN 2.3.11. The client was running Fedora 22 Linux and
OpenVPN 2.3.11. Keep the configuration file basic-udp-server.conf from the Server-side
routing recipe from Chapter 2, Client-server IP-only Networks, as well as the client
configuration file basic-udp-client.conf.

How to do it…
Start the server using the configuration file basic-udp-server.conf:1.

 [root@server]# openvpn --config basic-udp-server.conf

https://cdp.packtpub.com/openvpncookbooksecondedition/wp-admin/post.php?post=199&action=edit#post_391
https://cdp.packtpub.com/openvpncookbooksecondedition/wp-admin/post.php?post=199&action=edit#post_391

Troubleshooting OpenVPN - Routing

[220]

Next, start the client:2.

 [root@client]# openvpn --config basic-udp-client.conf
 ...
 ... Initialization Sequence Completed

At this point, it is possible to ping the remote VPN IP and all the interfaces that3.
are on the VPN server themselves:

 [client]$ ping -c 2 10.200.0.1
 PING 10.200.0.1 (10.200.0.1) 56(84) bytes of data.
 64 bytes from 10.200.0.1: icmp_seq=1 ttl=64 time=25.2 ms
 64 bytes from 10.200.0.1: icmp_seq=2 ttl=64 time=25.1 ms
 [client]$ ping -c 2 10.198.0.10
 PING 10.198.0.10 (10.198.0.10) 56(84) bytes of data.
 64 bytes from 10.198.0.10: icmp_seq=1 ttl=64 time=24.7 ms
 64 bytes from 10.198.0.10: icmp_seq=2 ttl=64 time=25.0 ms

If either of these pings fails, then the VPN connection has not been
established successfully and there is no need to continue.

If no routes have been added to the server-side gateway, then all other hosts on4.
the remote 10.198.0.0/16 network will be unavailable:

 [client]$ ping 10.198.0.1
 PING 10.198.0.1 (10.198.0.1) 56(84) bytes of data.
 ^C
 --- 10.198.0.1 ping statistics ---
 1 packets transmitted, 0 received, 100% packet loss, time 764ms

If we add a route on the LAN gateway of the remote network to explicitly5.
forward all the VPN traffic to the VPN server, then we can reach all machines on
the remote LAN (like it was done in the Server-side routing recipe from Chapter
2, Client-server IP-only Networks):

 [gateway]> ip route add 10.200.0.0/24 via 10.198.0.10

Here, 10.198.1.1 is the LAN IP address of the VPN server. In this case, the
remote LAN gateway is running Linux. The exact syntax for adding a static
route to the gateway will vary with the model and operating system of the
gateway.

https://cdp.packtpub.com/openvpncookbooksecondedition/wp-admin/post.php?post=199&action=edit#post_391
https://cdp.packtpub.com/openvpncookbooksecondedition/wp-admin/post.php?post=199&action=edit#post_391

Troubleshooting OpenVPN - Routing

[221]

Now, all the machines are reachable:6.

 [client]$ ping 10.198.0.1
 PING 10.198.0.1 (10.198.0.1) 56(84) bytes of data.
 64 bytes from 10.198.0.1: icmp_seq=1 ttl=63 time=27.1 ms
 64 bytes from 10.198.0.1: icmp_seq=2 ttl=63 time=25.0 ms

How it works…
When the VPN client attempts to make a connection to a host on the server-side LAN,
packets are sent with a source and destination IP address:

Source IP = 10.200.0.2: This address is the VPN tunnel's IP address
Destination IP = IP: This is the IP of the host we're trying to contact

The remote host will want to reply with a packet, with the source and destination IP
addresses swapped. When the remote host wants to send the packet, it does not know
where to send it to, as the address 10.200.0.2 is our private VPN address. It then
forwards the packet to the LAN gateway. However, the LAN gateway also does not know
where to return the packets to, and will forward them out to its default gateway. When the
packets reach a router that is connected directly to the Internet, that router usually will
decide to drop (throw away) the packets, causing the host to become unreachable.

By adding a route on the remote LAN gateway – telling it that all the traffic for the network
10.200.0.0/24 should be forwarded to the VPN server – the packets are sent back to the
right machine. The VPN server will forward the packets back to the VPN client and the
connection is established.

The step to ping the remote VPN endpoint first and then the server-LAN IP (10.198.0.10)
may seem superfluous at first but these are crucial steps when troubleshooting routing
issues. If these steps already fail, then there is no need to look at the missing routes.

There's more…
In this section, we will focus on different solutions to the problem described in this recipe.

Troubleshooting OpenVPN - Routing

[222]

Masquerading
A quick and dirty solution to the above issue is outlined in the Server-side routing recipe
from Chapter 2, Client-server IP-only Networks. In the There's More… section of that recipe,
masquerading (a form of NAT'ing) is used to make it appear as if all the traffic is coming
from the OpenVPN server itself. This is perfect if you have no control over the remote LAN
gateway, but it is not a very clean routing solution. Certain applications do not behave very
well when NAT'ted. Also, from a security logging point of view, it is sometimes better to
avoid NAT'ting, as you are mapping multiple IP addresses onto a single one, thereby losing
information.

Adding routes on the LAN hosts
Instead of adding a route to the remote LAN gateway, it is also possible to add a route on
each of the remote LAN hosts that the VPN client needs to reach. This solution is perfect if
the VPN client only needs to be able to reach a limited set of server-side hosts, but it does
not scale very well.

See also
The Server-side routing recipe from Chapter 2, Client-server IP-only Networks,
which contains the basic setup for routing the traffic from the server-side LAN

Missing return routes when iroute is used
This recipe is a continuation of the previous one. After ensuring that a single VPN client can
reach the server-side LAN, the next step is to make sure that other hosts behind the VPN
client can reach the hosts on the server-side LAN.

In this recipe, we will first set up a VPN as is done in the Routing: subnets on both sides recipe
from Chapter 2, Client-Server IP-Only Networks. If no return routes are set up, then the hosts
on the client-side LAN will not be able to reach the hosts on the server-side LAN and vice
versa. By adding the appropriate routes, the issue is resolved.

https://cdp.packtpub.com/openvpncookbooksecondedition/wp-admin/post.php?post=199&action=edit#post_391
https://cdp.packtpub.com/openvpncookbooksecondedition/wp-admin/post.php?post=199&action=edit#post_391

Troubleshooting OpenVPN - Routing

[223]

Getting ready
We use the following network layout:

Set up the client and server certificates using the first recipe from Chapter 2, Client-server IP-only
Networks. For this recipe, the server computer was running CentOS 6 Linux and OpenVPN 2.3.11. The client
was running Fedora 22 Linux and OpenVPN 2.3.11. Keep the configuration file example2-5-
server.conf, from the Routing: subnets on both sides recipe from Chapter 2, Client-server IP-only
Networks, as well as the client configuration, basic-udp-client.conf, from the Server-side routing
recipe from Chapter 2, Client-server IP-only Networks.

How to do it…
Start the server:1.

 [root@server]# openvpn --config example2-5-server.conf

Next, start the client:2.

 [root@client]# openvpn --config basic-udp-client.conf
 ...
 ... Initialization Sequence Completed

At this point, it is possible to ping the remote VPN IP and all the interfaces that3.
are on the VPN server itself, and vice versa:

 [client]$ ping -c 2 10.200.0.1
 PING 10.200.0.1 (10.200.0.1) 56(84) bytes of data.
 64 bytes from 10.200.0.1: icmp_seq=1 ttl=64 time=25.2 ms
 64 bytes from 10.200.0.1: icmp_seq=2 ttl=64 time=25.1 ms
 [client]$ ping -c 2 10.198.0.10
 PING 10.198.0.1 (10.198.0.10) 56(84) bytes of data.
 64 bytes from 10.198.0.10: icmp_seq=1 ttl=64 time=24.7 ms

https://cdp.packtpub.com/openvpncookbooksecondedition/wp-admin/post.php?post=199&action=edit#post_391
https://cdp.packtpub.com/openvpncookbooksecondedition/wp-admin/post.php?post=199&action=edit#post_391
https://cdp.packtpub.com/openvpncookbooksecondedition/wp-admin/post.php?post=199&action=edit#post_391

Troubleshooting OpenVPN - Routing

[224]

 64 bytes from 10.198.0.10: icmp_seq=2 ttl=64 time=25.0 ms
 [server]$ ping -c 2 10.200.0.2
 PING 10.200.0.2 (10.200.0.2) 56(84) bytes of data.
 64 bytes from 10.200.0.2: icmp_seq=1 ttl=64 time=25.0 ms
 64 bytes from 10.200.0.2: icmp_seq=2 ttl=64 time=24.6 ms
 [server]$ ping -c 2 192.168.4.64
 PING 192.168.4.64 (192.168.4.64) 56(84) bytes of data.
 64 bytes from 192.168.4.64: icmp_seq=1 ttl=64 time=25.2 ms
 64 bytes from 192.168.4.64: icmp_seq=2 ttl=64 time=24.3 ms

The routing table on the server shows that the remote network is routed correctly:4.

 [server]$ netstat -rn | grep tun0
 192.168.4.0 10.200.0.1 255.255.255.0 UG 0 0 0 tun0
 10.200.0.0 0.0.0.0 255.255.255.0 U 0 0 0 tun0

When we try to ping a remote host on the server-side LAN it fails, as was the case5.
in the previous recipe. Vice versa, when we try to ping a client-side LAN host
from a host on the server-side LAN, we see:

 [siteB-host]$ ping -c 2 192.168.4.66
 PING 192.168.4.66 (192.168.4.66) 56(84) bytes of data.
 --- 192.168.4.66 ping statistics ---
 2 packets transmitted, 0 received, 100% packet loss, time 999ms

By adding the appropriate routes on the gateways at both the sides, the routing is6.
restored. First, the gateway on the server-side LAN:

 [gateway1]> ip route add 192.168.4.0/24 via 10.198.0.10

Here, 10.198.0.10 is the LAN IP address of the VPN server.

Next, the gateway/router on the client-side LAN:

 [gateway2]> ip route add 10.198.0.0/16 via 192.168.4.64

Here, 192.168.4.64 is the LAN IP address of the VPN client.

After this, the hosts on the LANs can reach each other.

Troubleshooting OpenVPN - Routing

[225]

How it works…
Similar to the previous recipe, when a host on the Site A's LAN attempts to make a
connection to a host on the Site B's LAN packets that are sent with a source and destination
IP address:

Source IP = 192.168.4.64: Site A's LAN address
Destination IP = 10.198.1.12: Site B's LAN address

The remote host will want to reply with a packet with the source and destination IP
addresses swapped. When the remote host wants to send the packet, it forwards the packet
to the LAN gateway. However, the LAN gateway also does not know where to return the
packets to, and will forward them out to its default gateway. When the packets reach a
router that is connected directly to the Internet, then the router usually will decide to drop
(throw away) the packets, causing the host to become unreachable.

A similar problem occurred in the previous recipe, but now the IP addresses of the packets
are the actual Site A's and Site B's LAN IP addresses.

By adding the appropriate routes on both the sides, the problem is alleviated.

When troubleshooting this sort of routing issue, it is very important to start at the innermost
network (the actual VPN, in this case) and then work your way outwards:

First, make sure the VPN endpoints can see each other.1.
Make sure the VPN client can reach the server LAN IP and vice versa.2.
Make sure the VPN client can reach a host on the server-side LAN.3.
Make sure a host on the server-side LAN can see the VPN client.4.
Make sure a host on the client-side LAN can see the VPN server.5.
Finally, make sure a host on the client-side LAN can see a host on the server-side6.
LAN and vice versa.

There's more…
Again, a quick and a dirty solution to the above issue is outlined in the Server-side routing
recipe from Chapter 2, Client-server IP-only Networks. In that recipe, masquerading is used
to make it appear as if all the traffic is coming from the OpenVPN server itself. In particular
when connecting subnets over a VPN, this is not advisable, as masquerading makes it
impossible to tell which client is connecting to which server and vice versa. Therefore, a
fully-routed setup is preferred in this case.

https://cdp.packtpub.com/openvpncookbooksecondedition/wp-admin/post.php?post=199&action=edit#post_391

Troubleshooting OpenVPN - Routing

[226]

See also
The Routing: subnets on both sides recipe from Chapter 2, Client-server IP-only
Networks, which explains in detail how to set up routing on both the client and
the server side

All clients function except the OpenVPN
endpoints
This recipe is again a continuation of the previous one. The previous recipe explained how
to troubleshoot routing issues when connecting a client-side LAN (or subnet) to a server-
side LAN. However, in the previous recipe, an omission in the routing configuration was
made on purpose. In this recipe, we will focus on troubleshooting this quite common
omission.

Getting ready
We use the following network layout:

Set up the client and server certificates using the first recipe from Chapter 2, Client-server
IP-only Networks. For this recipe, the server computer was running CentOS 6 Linux and
OpenVPN 2.3.11. The client was running Fedora 22 Linux and OpenVPN 2.3.11. Keep the
configuration file example2-5-server.conf from the Routing: subnets on both sides from
Chapter 2, Client-server IP-only Networks, at hand, as well as the client
configuration, basic-udp-client.conf, from the Server-side routing recipe from Chapter
2, Client-server IP-only Networks.

https://cdp.packtpub.com/openvpncookbooksecondedition/wp-admin/post.php?post=199&action=edit#post_391
https://cdp.packtpub.com/openvpncookbooksecondedition/wp-admin/post.php?post=199&action=edit#post_391
https://cdp.packtpub.com/openvpncookbooksecondedition/wp-admin/post.php?post=199&action=edit#post_391
https://cdp.packtpub.com/openvpncookbooksecondedition/wp-admin/post.php?post=199&action=edit#post_391
https://cdp.packtpub.com/openvpncookbooksecondedition/wp-admin/post.php?post=199&action=edit#post_391

Troubleshooting OpenVPN - Routing

[227]

How to do it…
Start the server:1.

 [root@server]# openvpn --config example2-5-server.conf

Next, start the client:2.

 [root@client]# openvpn --config basic-udp-client.conf
 ...
 ... Initialization Sequence Completed

Add the appropriate routes on the gateways at both the sides:3.

 [gateway1]> ip route add 192.168.4.0/24 via 10.198.0.10
 [gateway2]> ip route add 10.198.0.0/16 via 192.168.4.64

After this, all the hosts on the LANs can reach each other.

We verify this by pinging various machines on the LANs on either of the sides:4.

 [client]$ ping -c 2 10.198.0.10
 [server]$ ping -c 2 192.168.4.64
 [siteA-host]$ ping -c 2 10.198.0.1
 [siteB-host]$ ping -c 2 192.168.4.66

All of them work. However, when the VPN server tries to ping a host on the
client-side LAN, it fails:

 [server]$ ping -c 2 192.168.4.66
 PING 192.168.4.66 (192.168.4.66) 56(84) bytes of data.
 --- 192.168.4.66 ping statistics ---
 2 packets transmitted, 0 received, 100% packet loss, time
 1009ms

Similarly, the client can only reach the LAN IP of the server and none of the
other hosts.

On Linux and UNIX hosts, it is possible to explicitly specify the source IP5.
address:

 [server]$ ping -I 10.198.0.10 -c 2 192.168.4.66
 PING 192.168.4.66 (192.168.4.66) 56(84) bytes of data.
 64 bytes from 192.168.4.66: icmp_seq=1 ttl=63 time=25.5 ms
 64 bytes from 192.168.4.66: icmp_seq=2 ttl=63 time=24.3 ms

Troubleshooting OpenVPN - Routing

[228]

That works! So, there is a problem with the source address of the packets.

By adding an extra route for the VPN subnet itself, to the gateways on both the6.
ends, this issue is resolved:

 [gateway1]> ip route add 10.200.0.0/24 via 10.198.0.10
 [gateway2]> ip route add 10.200.0.0/24 via 192.168.4.64

Now, the VPN server can reach all the hosts on the client's subnet and vice versa:7.

 [server]$ ping -c 2 192.168.4.66
 PING 192.168.4.66 (192.168.4.66) 56(84) bytes of data.
 64 bytes from 192.168.4.66: icmp_seq=1 ttl=63 time=25.3 ms
 64 bytes from 192.168.4.66: icmp_seq=2 ttl=63 time=24.9 ms

How it works…
To troubleshoot issues like these, it is very handy to write out all the source addresses and
the destination addresses of the LANs involved. In this case, the problem occurs when the
VPN server wants to connect to a host on the client-side LAN. On the VPN server, the
packet that is sent to the client-side host is sent out of the VPN interface directly. Therefore,
the source address of this packet is set to the IP address of the VPN interface itself. Thus, the
packet has the following IP addresses:

Source IP = 10.200.0.1: VPN server's IP address
Destination IP = 192.168.4.66: Site A's LAN address

The remote host will want to reply with a packet with the source and destination IP
addresses swapped. When the remote host wants to send the packet, it forwards the packet
to the LAN gateway. However, the LAN gateway also does not know where to return the
packets to, and will forward them out to its default gateway. When the packets reach a
router that is connected directly to the Internet, that router usually will decide to drop
(throw away) the packets, causing the host to become unreachable.

This problem occurs only on the VPN server and VPN client. On all other hosts on the
client-side and server-side LAN, the LAN IP address is used and routing works as
configured in the previous recipe.

By adding the appropriate routes on both the sides the problem is resolved.

Troubleshooting OpenVPN - Routing

[229]

There's more…
A good use of NAT'ing in this recipe would be to remove any references to the VPN IP
range from the routing tables. This can be done by just masquerading the VPN endpoint
addresses. If this is done, the extra routes are no longer needed on the gateways on both the
LANs. For example, by adding a NAT'ing rule on the server and a similar one on the
client, the extra routes on the gateways are no longer needed.

 [root@server]# iptables -t nat -I POSTROUTING -i tun0 -o eth0 \
 -s 10.200.0.0/24 -j MASQUERADE
 [root@client]# iptables -t nat -I POSTROUTING -i tun0 -o eth0 \
 -s 10.200.0.0/24 -j MASQUERADE

Note that this is easily done on Linux and UNIX-based operating systems but it requires
more effort on Windows.

See also
The Routing: subnets on both sides recipe from Chapter 2, Client-server IP-only
Networks, which explains in detail how to set up routing on both the client and
the server side

Source routing
As the network configurations grow more complex, the requirement for more advanced
features, such as the source routing features, increases. Source routing is typically used
whenever a server is connected to a network (or the Internet) using two network interfaces
(see the following image). In this case, it is important to ensure that the connections that are
started on one of the interfaces are kept to that interface. If the incoming traffic for a (VPN)
connection is made on the first interface but the return traffic is sent back over the second
interface, then VPN connections, amongst others, will fail, as we shall see in this recipe.
Source routing is an advanced feature of most of the modern operating systems. In this
recipe, we will show how to set up source routing using the Linux iproute2 tools, but the
same can be achieved on other operating systems using similar tools.

https://cdp.packtpub.com/openvpncookbooksecondedition/wp-admin/post.php?post=199&action=edit#post_391

Troubleshooting OpenVPN - Routing

[230]

Getting ready
We use the following network layout:

Set up the client and server certificates using the first recipe from Chapter 2, Client-server
IP-only Networks. For this recipe, the server computer was running CentOS 6 Linux and
OpenVPN 2.3.11 and was connected to a router with two IP addresses: 192.168.4.65
and 192.168.2.13; the default gateway for the system was 192.168.2.1, which means
that the traffic will leave the interface with the IP address 192.168.2.13 by default. The
secondary gateway had the IP address 192.168.4.1. The client was running Windows 7
64bit and OpenVPN 2.3.11. The client IP address was 192.168.2.10 with default
route 192.168.2.1. Keep the configuration file basic-udp-server.conf from the Server-
side routing recipe from Chapter 2, Client-server IP-only Networks, as well as the client
configuration file basic-udp-client.ovpn from the Using an ifconfig-pool block recipe
from Chapter 2, Client-server IP-only Networks.

How to do it…
Start the server using the configuration file basic-udp-server.conf:1.

 [root@server]# openvpn --config basic-udp-server.conf

https://cdp.packtpub.com/openvpncookbooksecondedition/wp-admin/post.php?post=199&action=edit#post_391
https://cdp.packtpub.com/openvpncookbooksecondedition/wp-admin/post.php?post=199&action=edit#post_391
https://cdp.packtpub.com/openvpncookbooksecondedition/wp-admin/post.php?post=199&action=edit#post_391

Troubleshooting OpenVPN - Routing

[231]

Next, start the client:2.

In this configuration, the remote server address openvpnserver.example.com3.
resolves to 192.168.4.65.

The connection will fail to start and the client OpenVPN log file will show the
following message repeated a few times:

 Wed Aug 25 16:24:28 2010 TCP/UDP: Incoming packet rejected from
 192.168.2.13:1194[2], expected peer address: 192.168.4.65:1194
 (allow this incoming source address/port by removing --remote
 or adding --float)

By adding a source routing rule to return all the traffic, which comes in on one4.
interface (192.168.4.65) from a host on the other interface (the
subnet 192.168.2.0/24), wants to leave the interface (192.168.2.0/24) to the
router associated with the incoming subnet (192.168.4.1), the connection is
restored:

 [root@server]# ip route add to default table 100 dev eth0 \
 via 192.168.4.1
 [root@server]# ip rule add from 192.168.2.10 priority 50 \
 table 100
 [root@server]# ip rule add to 192.168.2.10 priority 50 \
 table 100

Now, the client can successfully connect to the VPN server.

Troubleshooting OpenVPN - Routing

[232]

How it works…
When a connection is made from the client 192.168.2.10 to the VPN
server 192.168.4.65, the return route is chosen to be the shortest one possible, which in
the setup described here is 192.168.2.1. The server operating system will set the return IP
address of the packets to 192.168.2.13, as that is the IP address of the interface associated
with that network. This confuses the OpenVPN client, as it connects to host 192.168.4.65
but gets return traffic from 192.168.2.13. By explicitly forcing traffic to go out the other
interface (192.168.4.65), this asymmetric routing issue is resolved.

The exact syntax of the source routing rules is highly dependent on the exact network
configuration, but the general idea of the three commands outlined in the section How to do
it is to:

Create a routing table with ID 100 and set the default gateway device for this
table to eth0, which has the IP address 192.168.4.65
Create a routing rule that any traffic which comes from client 192.168.2.10 is
redirected to the routing table
Create a routing rule that any traffic which wants to leave client 192.168.2.10
is redirected to the routing table

The routing rules would need to be tweaked for a live situation, as these rules block out
certain other types of network traffic, but the principle is correct.

There's more…
More advanced routing control can be done using LARTC (Linux Advanced Routing and
Traffic Control). A better approach would be to mark packets coming on the interface and
only redirect the marked packets to the correct outgoing interface.

Routing and permissions on Windows
In this recipe, we will focus on the common error experienced by the users when the VPN
client machine is running Windows without full or elevated privileges. Under certain
circumstances, the OpenVPN client can connect successfully but the routes that are pushed
out by the remote server are not correctly set up. This recipe will focus on how to
troubleshoot and correct this error.

Troubleshooting OpenVPN - Routing

[233]

Getting ready
Set up the client and server certificates using the first recipe from Chapter 2, Client-server
IP-only Networks. For this recipe, the server computer was running CentOS 6 Linux and
OpenVPN 2.3.11. The client was running Windows 7 64bit and OpenVPN 2.3.11. Keep the
configuration file basic-udp-server.conf from the Server-side routing recipe from
Chapter 2, Client-server IP-only Networks, as well as the client configuration file basic-udp-
client.ovpn from the Using an ifconfig-pool block recipe from Chapter 2, Client-server IP-
only Networks.

How to do it…
Log in on Windows as a non-privileged user, being a user without Power User1.
or Administrator privileges. Also, make sure to temporarily remove the Run as
Administrator flag from OpenVPN to launch OpenVPN without elevated
privileges. This can be done by unchecking the Run this program as an
administrator flag in the OpenVPN GUI properties:

https://cdp.packtpub.com/openvpncookbooksecondedition/wp-admin/post.php?post=199&action=edit#post_391
https://cdp.packtpub.com/openvpncookbooksecondedition/wp-admin/post.php?post=199&action=edit#post_391
https://cdp.packtpub.com/openvpncookbooksecondedition/wp-admin/post.php?post=199&action=edit#post_391

Troubleshooting OpenVPN - Routing

[234]

Start the server using the configuration file basic-udp-server.conf:2.

 [root@server]# openvpn --config basic-udp-server.conf

Finally, start the client.3.

The connection will start and the OpenVPN GUI light will turn green. However, the client
OpenVPN log file will show the following messages:

 ... C:\WINDOWS\system32\route.exe ADD 10.198.0.0 MASK 255.255.0.0
10.200.0.1
 ... ROUTE: route addition failed using CreateIpForwardEntry: Network
access is denied. [status=65 if_index=2]
 ... Route addition via IPAPI failed [adaptive]
 Thu Aug 26 16:47:53 2010 us=187000 Route addition fallback to route.exe

If you attempt to reach a host on the server-side LAN, it will fail:

 [WinClient]C:\>ping 10.198.0.1
 Pinging 10.198.0.1 with 32 bytes of data:
 Request timed out.
 Ping statistics for 10.198.0.1:
 Packets: Sent = 1, Received = 0, Lost = 1 (100% loss)

The solution to this issue is to give the proper networking rights to the user, or to restore
elevated privileges for OpenVPN again.

How it works…
The OpenVPN client tries to open the TAP-Win32 adapter, which is allowed in a default
installation. However, when the server pushes out a route to the client using:

 push "route 10.198.0.0 255.255.0.0"

Troubleshooting OpenVPN - Routing

[235]

Then, the OpenVPN client will not be able to actually add this route to the system routing
tables, due to missing administrator privileges. However, the VPN connection is
successfully established and the GUI client shows a successful connection.

Note that even without the push "route" statement, the Windows OpenVPN GUI showed
a green icon, suggesting the connection had started. Technically speaking, it is true that the
connection has been established, but this should still be considered as a bug.

There's more…
Windows XP and higher versions include a Run As Administrator service that allows a
user to temporarily run a program with a higher privilege level. This mechanism was
expanded in Windows Vista/7 and was made the default when launching applications. This
has actually been the cause of numerous questions on the openvpn-users mailing list
when running OpenVPN on these platforms.

Unable to change Windows network location
The title of this recipe may not seem related to routing issues, but the Windows network
location depends on routing to work. Starting with Windows Vista, Microsoft introduced
the concept of network locations. By default, there are multiple network locations:
Home, Work and Public for Windows 7 and Private and Public for Windows 8 and above.
These network locations apply to all network adapters, including OpenVPN's virtual TAP-
Win network adapter.

The Home network location is intended for a home network. Similarly, the Work network
location also provides a high level of trust at work, allowing the computer to share files,
connect to printers and so on. In Windows 8 and above, the Home and Work network
locations are merged together to become the trusted Private network location. The Public
network location is not trusted and access to network resources is restricted by Windows,
even when the Windows firewall is disabled.

The routing properties of an OpenVPN setup determine whether the TAP-Win adapter is
trusted or not, and thus whether file sharing is allowed. In this recipe, we will show how to
change an OpenVPN setup so that the network location can be altered.

Troubleshooting OpenVPN - Routing

[236]

Getting ready
Set up the client and server certificates using the first recipe from Chapter 2, Client-server
IP-only Networks. For this recipe, the server computer was running CentOS 6 Linux and
OpenVPN 2.3.11. The client was running Windows 7 64bit and OpenVPN 2.3.11. Keep the
configuration file example2-7-server.conf from the Redirecting the default gateway recipe
from Chapter 2, Client-server IP-only Networks at hand, as well as the client configuration
file basic-udp-client.ovpn from the Using an ifconfig-pool block recipe from Chapter
2, Client-server IP-only Networks.

How to do it…
Start the server using the configuration file example-2-7-server.conf:1.

 [root@server]# openvpn --config example2-7-server.conf

Next, start the client.2.

Go to the Network and Sharing Center and observe that the TAP adapter is in3.
the section Public Network and that it is not possible to change this. Also, try to
access a file share via the VPN tunnel. This should not be possible.
Change the server configuration by removing def1 from the push redirect-4.
gateway def1 line:

 push "redirect-gateway"

Restart the VPN connection on both sides.5.

https://cdp.packtpub.com/openvpncookbooksecondedition/wp-admin/post.php?post=199&action=edit#post_391
https://cdp.packtpub.com/openvpncookbooksecondedition/wp-admin/post.php?post=199&action=edit#post_391
https://cdp.packtpub.com/openvpncookbooksecondedition/wp-admin/post.php?post=199&action=edit#post_391
https://cdp.packtpub.com/openvpncookbooksecondedition/wp-admin/post.php?post=199&action=edit#post_391

Troubleshooting OpenVPN - Routing

[237]

As the VPN connection comes up, Windows will ask you for the location of the6.
new network Network:

Choose the Work network location, then give the new network the name VPN.7.
Now, go to the Network and Sharing Center once more and observe that the8.
TAP adapter (named vpn0) is in the work network location VPN:

Troubleshooting OpenVPN - Routing

[238]

How it works…
Even though all network traffic is routed over the VPN (using redirect-gateway def1)
Windows does not trust the VPN adapter and hence will refuse full access over the VPN
tunnel. Windows will only trust a network adapter if it advertises a default gateway
(0.0.0.0/0), or the network adapter must be part of a Windows domain. This can be fixed by
changing the server configuration to use:

push "redirect-gateway"

Troubleshooting OpenVPN - Routing

[239]

There's more…
It is also possible to use the Windows Registry editor to change the network location, but
this is not recommended, as it will mark all network adapters as trusted.

Troubleshooting client-to-client traffic
routing
In this recipe, we will troubleshoot a VPN setup where it is the intention that client-to-client
traffic is enabled, but the server configuration directive “client-to-client” is missing. In a
TUN-style network, it is possible to allow client-to-client traffic without this directive and it
even allows the server administrator to apply firewalling rules to the traffic between clients.
In a TAP-style network, this is generally not possible, as will be explained in the There's
more… section.

Getting ready
We use the following network layout:

Troubleshooting OpenVPN - Routing

[240]

Set up the client and server certificates using the first recipe from Chapter 2, Client-server
IP-only Networks. For this recipe, the server computer was running CentOS 6 Linux and
OpenVPN 2.3.11. The first client was running Fedora 22 Linux and OpenVPN 2.3.11. The
second client was running Windows 7 64bit and OpenVPN 2.3.11. Keep the configuration
file basic-udp-server.conf from the Server-side routing recipe from Chapter 2, Client-
server IP-only Networks, as well as the client configuration file basic-udp-client.ovpn
from the Using an ifconfig-pool block recipe from Chapter 2, Client-server IP-only Networks.

How to do it…
Start the server using the configuration file, basic-udp-server.conf:1.

 [root@server]# openvpn --config basic-udp-server.conf

Next, start the Linux client.2.

 [root@client]# openvpn --config basic-udp-client.conf

And finally, start the Windows client:3.

Next, try to ping the Windows client from the Linux client (make sure no4.
firewalls are blocking the traffic):

 [client]$ ping -c 2 10.200.0.3
 PING 10.200.0.3 (10.200.0.3) 56(84) bytes of data.
 --- 10.200.0.3 ping statistics ---
 2 packets transmitted, 0 received, 100% packet loss, time
 10999ms

https://cdp.packtpub.com/openvpncookbooksecondedition/wp-admin/post.php?post=199&action=edit#post_391
https://cdp.packtpub.com/openvpncookbooksecondedition/wp-admin/post.php?post=199&action=edit#post_391
https://cdp.packtpub.com/openvpncookbooksecondedition/wp-admin/post.php?post=199&action=edit#post_391

Troubleshooting OpenVPN - Routing

[241]

It is possible that the host is already reachable, but in that case the firewall on
the server is very permissive.

At this point, it is instructive to set up iptables logging on the VPN server:5.

 [root@server]# iptables -I FORWARD -i tun+ -j LOG

Then try the ping again. This will result in the following messages in
/var/log/messages:

 ... openvpnserver kernel: IN=tun0 OUT=tun0 SRC=10.200.0.2
 DST=10.200.0.3 LEN=84 TOS=0x00 PREC=0x00 TTL=63 ID=0 DF
 PROTO=ICMP TYPE=8 CODE=0 ID=40808 SEQ=1
 ... openvpnserver kernel: IN=tun0 OUT=tun0 SRC=10.200.0.2
 DST=10.200.0.3 LEN=84 TOS=0x00 PREC=0x00 TTL=63 ID=0 DF
 PROTO=ICMP TYPE=8 CODE=0 ID=40808 SEQ=2

The first client 10.200.0.2 is trying to reach the second client 10.200.0.3. This issue can
be resolved by adding the client-to-client configuration directive to the server
configuration file and restarting the OpenVPN server, or it can be resolved by allowing
tunnel traffic to be forwarded:

 [server]# iptables -I FORWARD -i tun+ -o tun+ -j ACCEPT
 [server]# echo 1 > /proc/sys/net/ipv4/ip_forward

How it works…
When the first OpenVPN client tries to reach the second client, packets are sent to the server
itself. The OpenVPN server does not know how to handle these packets and hands them off
to the kernel. The kernel forwards the packets based on whether routing is enabled and
whether the firewall rules (iptables) allow it. If not, then the packet is simply dropped
and the second client is never reached.

By adding the following directive, the OpenVPN server process deals with the client-to-
client traffic internally, bypassing the kernel forwarding, and the firewalling rules:

client-to-client

The alternative solution, which is slightly more secure but also less scalable, is to properly
set up routing in the Linux kernel.

Troubleshooting OpenVPN - Routing

[242]

There's more…
In a TAP-style network, the above iptables rule does not work. In a TAP-style network,
all the clients are a part of the same broadcast domain. When the client-to-client
directive is omitted and a client tries to reach another client, it first sends out arp who has
messages to find out the MAC address of the other client. The OpenVPN server will ignore
these requests and will also not forward them to other clients, regardless of whether
an iptables rule is set or not. Hence, the clients cannot easily reach each other without
the client-to-client directive, unless tricks like proxy-ARP are used.

See also
The Enabling client-to-client traffic recipe, from Chapter 3, Client-server Ethernet-
style Networks, which explains how client-to-client traffic is set up in a TAP-style
environment

Understanding the MULTI: bad source
warnings
In this recipe, we focus again on a VPN configuration where we try to connect a client-side
LAN to a server-side LAN. Normally, this is done by adding a client-config-dir
directive to the OpenVPN server configuration, and then by adding the appropriate CCD
file. However, if the CCD file is not found or is not readable, then the VPN connection will
function properly, but the hosts on the client-side LAN will not be able to reach the hosts on
the server-side LAN and vice versa. In this case, the OpenVPN server log file will show
messages of the form MULTI: bad source, if the verbosity is set high enough. In this
recipe, we will first set up a VPN as is done in the Routing: subnets on both sides recipe from
Chapter 2, Client-server IP-only Networks, but with a missing CCD file for the client. Then,
we will show how to trigger the MULTI: bad source warnings and what can be done to
resolve the issue.

https://cdp.packtpub.com/openvpncookbooksecondedition/wp-admin/post.php?post=199&action=edit#post_391

Troubleshooting OpenVPN - Routing

[243]

Getting ready
We use the following network layout:

Set up the client and server certificates using the first recipe from the Chapter 2, Client-
server IP-only Networks. For this recipe, the server computer was running CentOS 6 Linux
and OpenVPN 2.3.11. The client was running Fedora 22 Linux and OpenVPN 2.3.11. Keep
the configuration file example2-5-server.conf from the Using client-config-dir files recipe
from Chapter 2, Client-server IP-only Networks. For the client, keep the configuration
file basic-udp-client.conf from the Server-side routing recipe from Chapter 2, Client-
server IP-only Networks.

How to do it…
First, make sure the client CCD file is not accessible:1.

 [root@server]# chmod 700 /etc/openvpn/cookbook/clients

Start the server using the configuration file example2-5-server.conf and with2.
increased verbosity:

 [root@server]# openvpn --config example2-5-server.conf --verb 5

Next, start the client to connect successfully:3.

 [root@client]# openvpn --config basic-udp-client.conf
 ...
 ... Initialization Sequence Completed

However, when a host on the client-side LAN tries to reach a machine on the
server-side LAN, the following message appears in the OpenVPN server log
file:

https://cdp.packtpub.com/openvpncookbooksecondedition/wp-admin/post.php?post=199&action=edit#post_391
https://cdp.packtpub.com/openvpncookbooksecondedition/wp-admin/post.php?post=199&action=edit#post_391
https://cdp.packtpub.com/openvpncookbooksecondedition/wp-admin/post.php?post=199&action=edit#post_391

Troubleshooting OpenVPN - Routing

[244]

 ... openvpnclient1/client-ip:58370 MULTI: bad source address
 from client [192.168.4.66], packet dropped

In this recipe, the root cause of the problem can be resolved as done in the Troubleshooting
client-config-dir issues recipe from Chapter 6, Troubleshooting OpenVPN – Configurations, fix
the permissions of the directory /etc/openvpn/cookbook/clients and reconnect the
OpenVPN client.

How it works…
In order to connect a remote LAN to an OpenVPN server, two server-configuration
directives are needed:

route remote-lan remote-mask
client-config-dir /etc/openvpn/cookbook/clients

And also a CCD file containing the name of the client certificate. The CCD file contains:

iroute remote-lan remote-mask

Without this, the OpenVPN server does not know which VPN client the remote network is
connected to. If a packet comes in from a client that the OpenVPN server does not know
about, then the packet is dropped and, with “verb 5” or higher, the warning MULTI: bad
source is printed.

There's more…
Apart from the warnings explained above, there is one other major reason for the MULTI:
bad source messages to occur.

Other occurrences of the MULTI: bad source message
Sometimes the MULTI: bad source message is printed in the OpenVPN server log file
even when no client-side LAN is connected to the VPN client. This happens most often with
VPN clients running Windows. When a file share is accessed over the VPN connection,
Windows sometimes sends packets with a different source IP address to that of the VPN
interface. These packets are not recognized by the OpenVPN server and the warning is
printed. The solution to this issue is not known.

Troubleshooting OpenVPN - Routing

[245]

See also
The Routing: subnets on both sides recipe from Chapter 2, Client-server IP-only
Networks, which explains the basics of setting up a client-config-dir setup

The Troubleshooting client-config-dir issues recipe from Chapter 6, Troubleshooting
OpenVPN – Configurations, which goes deeper into some of the frequently made
mistakes when using the client-config-dir directive

Failure when redirecting the default gateway
In this recipe, we will troubleshoot an infrequent yet very persistent issue that can occur
when setting up a VPN connection. When the redirect-gateway directive is used to
redirect the default gateway on an OpenVPN client, it sometimes causes the client to lose all
the Internet connections. This particularly occurs when the client machine on which
OpenVPN is running is connected to the rest of the network or with the Internet using a
PPP-based connection, such as PPPoE or PPPoA, especially, when using a GPRS/UMTS
connections via a mobile phone.

When this occurs, OpenVPN sometimes is not capable of determining the default gateway
before it is redirected. After the default gateway is redirected to the OpenVPN tunnel, the
whole tunnel collapses on itself, as all the traffic, including the encrypted tunnel traffic
itself, is redirected into the tunnel, causing the VPN to lock up.

This recipe will show how to detect this situation and what can be done about it. In this
recipe, we will not use a GPRS/UMTS connection but we will use a PPP-over-SSH
connection, which behaves in a similar fashion and is more readily available.

Getting ready
We use the following network layout:

https://cdp.packtpub.com/openvpncookbooksecondedition/wp-admin/post.php?post=199&action=edit#post_391

Troubleshooting OpenVPN - Routing

[246]

Set up the client and server certificates using the first recipe from Chapter 2, Client-server
IP-only Networks. For this recipe, the server computer was running CentOS 6 Linux and
OpenVPN 2.3.11. The client was running Fedora 22 Linux and OpenVPN 2.3.11. Keep the
configuration file basic-udp-server.conf from the Server-side routing recipe from
Chapter 2, Client-server IP-only Networks.

Make sure the client is connected to the network using a PPP connection, as otherwise the
issue described in the title of this recipe will not occur. For this recipe, a PPP-over-SSH
connection and the default route was altered to point to the ppp0 device.

How to do it…
Start the server and add an extra parameter to direct the default gateway:1.

 [root@server]# openvpn --config basic-udp-server.conf \
 --push "redirect-gateway"

Create the client configuration file:2.

 client
 proto udp
 # next is the IP address of the VPN server via the
 # PPP-over-SSH link
 remote 192.168.222.1
 port 1194

 dev tun
 nobind

 ca /etc/openvpn/cookbook/ca.crt
 cert /etc/openvpn/cookbook/client1.crt
 key /etc/openvpn/cookbook/client1.key
 tls-auth /etc/openvpn/cookbook/ta.key 1

 user nobody
 verb 5

Save it as example7-9-client.conf.

https://cdp.packtpub.com/openvpncookbooksecondedition/wp-admin/post.php?post=199&action=edit#post_391
https://cdp.packtpub.com/openvpncookbooksecondedition/wp-admin/post.php?post=199&action=edit#post_391

Troubleshooting OpenVPN - Routing

[247]

Check the system routes before starting the client:3.

 [root@client]# netstat -rn
 172.30.0.10 172.30.0.1 255.255.255.255 UGH 0 0 0 eth0
 192.168.222.1 0.0.0.0 255.255.255.255 UH 0 0 0 ppp0
 0.0.0.0 192.168.222.1 0.0.0.0 UG 0 0 0 ppp0

Now, start the client:4.

 [root@client]# openvpn --config example7-9-client.conf

The connection will start but after a few seconds will stop and the log file will
contain a warning message:

 ... OpenVPN ROUTE: omitted no-op route:
 192.168.222.1/255.255.255.255 -> 192.168.222.1

Check the system routes again:5.

 [client]$ netstat -rn
 172.30.0.19 172.30.0.1 255.255.255.255 UGH 0 0 0 eth0
 192.168.222.1 0.0.0.0 255.255.255.255 UH 0 0 0 ppp0
 192.16.186.192 0.0.0.0 255.255.255.192 U 0 0 0 eth0
 10.200.0.0 0.0.0.0 255.255.248.0 U 0 0 0 tun0
 10.198.0.0 10.200.0.1 255.255.0.0 UG 0 0 0 tun0
 0.0.0.0 10.200.0.1 0.0.0.0 UG 0 0 0 tun0

The default gateway is now the VPN tunnel but the original route to the gateway is now
gone.

All the connections on the client have stopped. What's worse, when the OpenVPN client is
aborted (by pressing Ctrl +C in the terminal window) the default route is not restored, as
the OpenVPN process does not have the proper rights to do so:

TCP/UDP: Closing socket
/sbin/ip route del 10.198.0.0/16
RTNETLINK answers: Operation not permitted
ERROR: Linux route delete command failed: external program exited with
error status: 2
/sbin/ip route del 192.168.222.1/32
RTNETLINK answers: Operation not permitted
ERROR: Linux route delete command failed: external program exited with
error status: 2
/sbin/ip route del 0.0.0.0/0
RTNETLINK answers: Operation not permitted
ERROR: Linux route delete command failed: external program exited with
error status: 2

Troubleshooting OpenVPN - Routing

[248]

/sbin/ip route add 0.0.0.0/0 via 192.168.222.1
RTNETLINK answers: Operation not permitted
ERROR: Linux route add command failed: external program exited with error
status: 2
Closing TUN/TAP interface

The result is that the default gateway on the client machine is gone. The only solution is to
reload the network adapter so that all the system defaults are restored.

The solution to the above problem is to use the following as is done in the Redirecting the
default gateway recipe from Chapter 2, Client-server IP-only Networks:

push "redirect-gateway def1"

How it works…
When the OpenVPN client initializes, it always tries to create a direct route to the OpenVPN
server via the existing system gateway. Under certain circumstances this fails, mostly due to
an odd network configuration. It is seen most often when the default gateway is a dial-up or
PPPoE connection, which is used in certain ADSL/VDSL setups and especially when using
GPRS/UMTS connections.

When the OpenVPN client is instructed to redirect all the traffic over the VPN tunnel, it
normally sends the encrypted VPN traffic itself over a direct link to the OpenVPN server.
You can think of the encrypted VPN traffic as outside of the tunnel. However, when this
direct route is missing, then this outside traffic is also sent into the tunnel, creating a
tunneling loop from which the VPN can never recover.

In the example used in this recipe, the situation is made worse by using the client
configuration directive:

user nobody

This tells the OpenVPN process to drop all the privileges after starting. When the client is
aborted because the tunnel is not functioning properly, the client is not capable of restoring
the original gateway and the system is left in a non-functioning state:

 [client]$ netstat -rn
 194.171.96.27 192.16.186.254 255.255.255.255 UGH 0 0 0 eth0
 192.168.222.1 0.0.0.0 255.255.255.255 UH 0 0 0 ppp0
 192.16.186.192 0.0.0.0 255.255.255.192 U 0 0 0 eth0

Only by adding a new default gateway can the network be restored.

https://cdp.packtpub.com/openvpncookbooksecondedition/wp-admin/post.php?post=199&action=edit#post_391

Troubleshooting OpenVPN - Routing

[249]

The proper fix is to use:

 push "redirect-gateway def1"

This will not overwrite the existing default gateway but will add two extra routes:

0.0.0.0 10.200.0.1 128.0.0.0 UGH 0 0 0 tun0
128.0.0.0 10.200.0.1 128.0.0.0 UGH 0 0 0 tun0

Both of which cover half the available network space. These two routes effectively replace
the existing default route whilst not overwriting it.

There's more…
This “biting your own tail” problem was much more common with older versions of
OpenVPN. In current versions of OpenVPN, the detection of the default gateway was much
improved and this problem now rarely occurs anymore. However, it is useful to see what
happens when the problem does occur.

See also
The Redirecting the default gateway recipe from Chapter 2, Client-server IP-only
Networks, which explains how to properly redirect all traffic via the VPN tunnel

https://cdp.packtpub.com/openvpncookbooksecondedition/wp-admin/post.php?post=199&action=edit#post_391

8
Performance Tuning

In this chapter, we will cover the following troubleshooting topics:

Optimizing performance using ping
Optimizing performance using iperf
Comparing IPv4 and IPv6 speed
OpenSSL cipher speed
OpenVPN in Gigabit networks
Compression tests
Traffic shaping
Tuning UDP-based connections
Tuning TCP-based connections
Analyzing performance using tcpdump

Introduction
This chapter focuses on getting the best performance out of an OpenVPN setup. There are
several parameters that can be tuned on both the server side and the client side for getting
the highest throughput and the lowest latency. However, the optimal settings of these
parameters largely depend on the network layout. The recipes in this chapter will therefore
provide guidelines on how to tune these parameters and how to measure the increase or
decrease in performance. These guidelines can then be applied to other network layouts to
find the optimal performance.

Performance Tuning

[251]

Optimizing performance using ping
In this recipe, we will use the low-level ping command to determine the optimal Maximum
Transfer Unit (MTU) size for our OpenVPN setup. Finding the right MTU size can have a
tremendous impact on performance, especially, when using satellite links, or even some
cable/ADSL providers. Especially, broadband connections using the PPPoE (PPP over
Ethernet) protocol often have a non-standard MTU size. In a regular LAN setup, it is hardly
ever required to optimize the MTU size, as OpenVPN's' default settings are close to optimal.

Getting ready
Make sure the client and the server computers are connected over a network. For this
recipe, the server computer was running CentOS 6 Linux. The client was running Fedora 22
Linux, but instructions for a Windows client are given as well.

How to do it…
We first verify that we can reach the server from the client:1.

 [client]$ ping -c 2 <openvpn-server-ip>

This will send two ICMP ping packets to the server and two replies should be
returned. If not, then a firewall or iptables rule is blocking ICMP traffic.
Ensure that the server can be reached using ping before proceeding.

Next, try sending a large ping packet from the client to the server, with the Don't2.
Fragment (DF) bit set. Strangely enough, on Linux, this is done using the
parameter -M do.

 [client]$ ping -c 2 -M do -s 1600 <openvpn-server-ip>

Normally, this command is not successful:

 From 172.30.0.128 icmp_seq=1 Frag needed and DF set (mtu =
 1500)

The maximum size of a packet that can be sent from this interface is 1500
bytes. From this, the Ethernet headers (normally 28 bytes) need to be
subtracted, which means that the maximum size of an ICMP packet is 1472
bytes:

Performance Tuning

[252]

 [client]$ ping -c 2 -M do -s 1472 <openvpn-server-ip>
 PING 172.30.0.128 (172.30.0.128) 1472(1500) bytes of data.
 1480 bytes from 172.30.0.128: icmp_seq=1 ttl=128 time=0.630 ms
 1480 bytes from 172.30.0.128: icmp_seq=2 ttl=128 time=0.398 ms

For Windows clients, the syntax of the ping command is slightly different:3.

 [winclient]C:> ping -f -l 1600 <openvpn-server-ip>
 Packet needs to be fragmented but DF set.

And:

 [winclient]C:> ping -f -l 1472 <openvpn-server-ip>
 Pinging 172.30.0.1 with 1472 bytes of data:
 Reply from 172.30.0.1: bytes=1472 time<1ms TTL=64

The payload size of 1472 bytes is actually the regular size for an Ethernet-
based network, even though this recipe was performed over a cable
connection.

A good initial value for OpenVPN's' tun-mtu setting is the maximum payload size plus the
28 bytes that were subtracted earlier. However, it does not mean this is the optimal value, as
we will see in the later recipes.

How it works…
The ICMP protocol which the ping command uses has the option to set a flag Don't
Fragment (DF). With this bit set, an ICMP packet may not be broken up into separate
pieces before it reaches its destination. If the packet were needed to be broken up by a
router before it could be transmitted, it is dropped and an ICMP error code is returned. This
provides a very easy method to determine the largest packet that can be transmitted to the
server and vice versa. In particular, in high-latency networks, for example, when a satellite
link is used, it is very important to limit the number of packets and to maximize the size of
each packet.

By smartly using the ping command, the maximum packet size can be determined. This
size can then be used to further optimize the OpenVPN performance.

Performance Tuning

[253]

There's more…
In some network setups, ICMP traffic is filtered, rendering this recipe useless. If it is
possible to reach the OpenVPN server, then the tunnel can also be used to find the
maximum payload size.

Start the OpenVPN server with the extra flags:

cipher none
auth none

Do the same for the OpenVPN client. Make sure compression is turned off (or simply not
specified) and that the fragment option is not used. This will start a clear-text tunnel over
which we can send ICMP packets of various sizes.

Ping the remote end's VPN IP address, for example:

 [client]$ ping -c 2 -M do -s 1472 10.200.0.1

When the ICMP packet becomes too large, the traffic will be dropped by an intermittent
router. Lower the ICMP packet size until the ping returns successfully. From that value, the
MTU size can be derived.

See also
The Tuning UDP-based connections recipe, which will explain in more detail how
to tune the performance of UDP-based setups
The Tuning TCP-based connections recipe, which goes deeper into the details of
tuning TCP-based setups and also explains some of the intricacies of the MTU
setting of the network adapter

Optimizing performance using iperf
This recipe is not really about OpenVPN but more about how to use the network
performance measurement tool iperf in an OpenVPN setup. The iperf utility can be
downloaded from http://sourceforge.net/projects/iperf/ for Linux, Windows, and
MacOS.

In this recipe, we will run iperf outside of OpenVPN and over the VPN tunnel itself, after
which the differences in performance will be explained.

http://sourceforge.net/projects/iperf/

Performance Tuning

[254]

Getting ready
We use the following network layout:

Set up the client and server certificates using the Setting up the public and private keys recipe
from Chapter 2, Client-server IP-only Networks. For this recipe, the server computer was
running CentOS 6 Linux and OpenVPN 2.3.11. The client was running Fedora 22 Linux and
OpenVPN 2.3.11. Keep the configuration file basic-udp-server.conf from the Server-side
routing recipe from Chapter 2, Client-server IP-only Networks, as well as the client
configuration file basic-udp-client.conf.

How to do it…
Start the server:1.

 [root@server]# openvpn --config basic-udp-server.conf

Next, start the client:2.

 [root@client]# openvpn --config basic-udp-client.conf
 ...
 ... Initialization Sequence Completed

Next, we start iperf on the server:3.

 [server]$ iperf -s

First, we measure the performance outside the tunnel:4.

 [client]$ iperf -l 1M -n 8M -c <openvpn-server-ip>
 [3] 0.0-15.2 sec 8 MBytes 4.1 Mbits/sec

https://cdp.packtpub.com/openvpncookbooksecondedition/wp-admin/post.php?post=234&action=edit#post_391

Performance Tuning

[255]

This actually measures the performance of data being sent to the server. The
cable network used in this recipe has a theoretical upload limit of 4 Megabits
per second (Mbps), which we are achieving in this test.

Next, we measure the performance inside the tunnel:5.

 [client]$ iperf -l 1M -n 8M -c 10.200.0.1
 [3] 0.0-17.0 sec 8 MBytes 3.95 Mbits/sec

With this network setup, there is a small performance difference between
traffic sent outside of the tunnel and traffic sent via the tunnel.

A second test is done over a 802.11n wireless network:6.

 [client]$ iperf -c <openvpn-server-ip>
 [4] 0.0-10.8 sec 7.88 MBytes 6.10 Mbits/sec

Versus:

 [client]$ iperf -c 10.200.0.1
 [5] 0.0-11.3 sec 5.25 MBytes 3.91 Mbits/sec

Here, there is a noticeable drop in performance, suggesting that the
OpenVPN is not configured optimally. There was a lot of noise on this
wireless network, which makes it difficult to optimize.

How it works…
The iperf tool is very straightforward: it sets up a TCP connection (or UDP, if desired) and
measures how fast it can send or receive data over this connection. Normally, traffic is
tested in only one direction, although a dual test can be triggered using the -r flag.

There's more…
Tuning network performance depends heavily on both the network latency and the
available bandwidth, as is outlined in more detail here.

Performance Tuning

[256]

Client versus server iperf results
Both the client and the server iperf processes report the network throughput after a iperf
-c session has ended. Practice shows that the numbers reported by the server used in this
recipe were more accurate than the numbers reported by the client. On the cable network
used when writing this recipe, the maximum upload speed is about 4 Mbps. The client
sometimes reported speeds larger than 4.4 Mbps, whereas the server reported a more
accurate 4.1 Mbps.

Network latency
One of the main reasons for the lack of performance drop over the cable network versus the
performance drop over the wireless network is due to network latency. On the cable
network, the latency was very stable at about 11 ms. On the wireless network, the latency
varied between 2 ms and 90 ms. Especially, this variation in latency can skew the iperf
performance measurements, making it very hard to optimize the OpenVPN parameters.

Gigabit networks
Performance tests on Gigabit networks show that the VPN itself is becoming the bottleneck.
A normal TCP connection would show a transfer rate of 900 Mbps, whereas a TCP
connection via an untuned OpenVPN tunnel would not perform faster than about 320
Mbps. We will come back to this later in this chapter.

See also
The recipe OpenVPN in Gigabit networks, which will explain in more detail how to
tune OpenVPN for better performance over high-speed networks

Comparing IPv4 and IPv6 speed
This recipe is a continuation of the previous recipe, but here we will focus on the
performance difference between tunneling Pv4 traffic and IPv6 traffic. In this recipe, we will
run iperf over the VPN tunnel using IPv4 addresses and IPv6 addresses inside the tunnel,
after which the differences in performance will be explained.

Performance Tuning

[257]

Getting ready
We use the following network layout:

Set up the client and server certificates using the Setting up the public and private keys recipe
from Chapter 2, Client-server IP-only Networks. For this recipe, the server computer was
running CentOS 6 Linux and OpenVPN 2.3.11. The client was running Fedora 22 Linux and
OpenVPN 2.3.11. Keep the configuration file example-2-4-server.conf from the Adding
IPv6 support recipe from Chapter 2, Client-server IP-only Networks, as well as the client
configuration file basic-udp-client.conf.

How to do it…
Start the server:1.

 [root@server]# openvpn --config example-2-4-server.conf

Next, start the client:2.

 [root@client]# openvpn --config basic-udp-client.conf
 ...
 ... Initialization Sequence Completed

Next, we start iperf on the server:3.

 [server]$ iperf -s

https://cdp.packtpub.com/openvpncookbooksecondedition/wp-admin/post.php?post=234&action=edit#post_391
https://cdp.packtpub.com/openvpncookbooksecondedition/wp-admin/post.php?post=234&action=edit#post_391

Performance Tuning

[258]

First, we measure the performance when tunneling IPv4 traffic:4.

 [client]$ iperf -l 1M -n 8M -c 10.200.0.1
 [3] 0.0-17.0 sec 8 MBytes 3.95 Mbits/sec

Next, we measure the performance using IPv6 packets:5.

 [client]$ iperf -l 1M -n 8M -c 2001:db8:100::1
 [3] 0.0-17.7 sec 8 MBytes 3.78 Mbits/sec

This shows a performance difference of roughly 5%. This difference is measured
consistently over all types of networks.

How it works…
An IPv6 address is longer than an IPv4 address. The source and destination addresses for
all packets are stored inside the encrypted packets that go over the OpenVPN tunnel. Thus,
the larger the addressing scheme used, the less bytes are left for the actual “payload”. An
IPv6 packet can actually carry 20 bytes less “payload” than an IPv4 packet. These 20 bytes
account for the 5% performance difference. There is very little that can be done about this.

There's more…
Tuning network performance depends heavily on the network characteristics, as well as the
tuning tools used, as is outlined in more detail here.

Client versus server iperf results
Both the client and the server iperf processes report the network throughput after
an iperf -c session has ended. Practice shows that the numbers reported by the server
used in this recipe were more accurate than the numbers reported by the client. Also, more
accurate results are achieved by running iperf with a fixed data size instead of the default
fixed time interval of 10 seconds. We specify a fixed block size (1 Megabyte) and a fixed
total size (8 Megabyte) using iperf -l 1M -n 8M -c <IP-address>.

This increases accuracy and improves the consistency of the numbers reported on the client
and server side.

Performance Tuning

[259]

OpenSSL cipher speed
OpenVPN uses OpenSSL to perform all cryptographic operations. This means that the
performance of an OpenVPN client or server depends on how fast the incoming traffic can
be decrypted and how fast the outgoing traffic can be encrypted. For a client with a single
connection to the OpenVPN server, this is almost never an issue, but with an OpenVPN
server with hundreds of clients, the cryptographic performance becomes very important.
Also, when running OpenVPN over a high-speed network link (Gigabit or higher), the
cryptographic performance also plays an important role.

In this recipe, we will show how to measure the performance of the OpenSSL cryptographic
routines and how this measurement can be used to improve the performance of an
OpenVPN server.

Getting ready
This recipe is performed on a variety of computers:

An old laptop with an Intel Core2 Duo T9300 processor running at 2.5 GHz,
running Fedora Linux 22 64bit
An older server with an Intel Xeon X5660 processor running at 2.8 GHz and with
support for the AESNI instructions, running CentOS 6 64bit
A high-end server with an Intel Xeon E5-2697A v4 processor running at 2.6 GHz
and with support for the AESNI instructions, running CentOS 6 64bit

The recipe can easily be performed on MacOS as well. Each computer had OpenVPN 2.3
installed, with the accompanying OpenSSL libraries.

How to do it…
On each system, the following OpenSSL commands are run:

 $ openssl speed -evp bf-cbc
 $ openssl speed -evp aes-128-cbc
 $ openssl speed -evp aes-256-cbc

Performance Tuning

[260]

The first command tests the speed of the OpenVPN default BlowFish cryptographic cipher.
The second and third test the performance of the 128 and 256-bit AES ciphers, which are
very commonly used to secure websites. All commands were run twice on the new high-
end server: once with support for the AES-NI instruction set turned on and once with AES-
NI support off using the $ OPENSSL_ia32=0 openssl speed -evp <cipher>.

The results are displayed in the following table. All numbers in the tables are the bytes per
second processed when encrypting a block of data. The size of the block of data is listed in
the columns.

For the BlowFish cipher, the following results were recorded:

Type 256 bytes 1024 bytes 8192 bytes

Laptop 95851.54k 95426.22k 95862.84k

Old Server 111466.67k 111849.47k 112162.13k

New Server 151329.96k 152054.10k 152428.54k

New Server, no AES-NI 151128.49k 151951.02k 152048.98k

For the AES128 cipher, the following results were recorded:

Type 256 bytes 1024 bytes 8192 bytes

Laptop 85588.05k 179870.91k 183104.85k

Old Server 758884.44k 762378.58k 755960.49k

New Server 802229.85k 806787.75k 807682.05k

New Server, no AES-NI 160414.98k 361608.53k 368836.61k

And for AES256:

Type 256 bytes 1024 bytes 8192 bytes

Laptop 60698.20k 130553.15k 132085.73k

Old Server 560398.93k 562632.92k 564687.49k

New Server 577053.35k 578981.21k 579532.12k

New Server, no AES-NI 114444.29k 266473.47k 270030.17k

Performance Tuning

[261]

How it works…
The output of the openssl speed command shows that the encryption and decryption
performance is dependent on both the encryption key and the hardware used. Most
OpenVPN packets are about 1500 bytes, so the column 1024 bytes is the most interesting
column to look at.

The BlowFish cipher results are quite interesting if you take the processor speed into
account: if you divide the BlowFish performance by the processor clock speed the numbers
are very similar. This means that the BlowFish performance is bound purely by the
processor clock speed. An older type processor running at a higher clock speed might
actually outperform a newer processor with a slightly lower clock speed.

For the AES128 and AES256 ciphers, this is no longer true. Here the modern i5/i7 and Xeon
architectures are much faster than the older Pentium 4 and Athlon architectures. With the
AES-NI extensions, the performance jumps by a factor of 4. If an OpenVPN server is set up
that must support many clients, then this cryptographic cipher is an excellent choice,
provided that the server CPU supports these extensions.

This recipe also provides a simple test of whether the AES-NI instructions are available and
whether they are actually picked up by the underlying OpenSSL library. If the speed results
between openssl and OPENSSL_ia32cap=0 openssl do not differ, then the AES-NI
instructions are not being used for encryption or decryption.

There's more…
The choice of the cryptographic cipher on the performance of OpenVPN is minimal for a
single client. Measurements done for this recipe indicate that the client CPU has a load of
less than 8% when downloading a file at the highest speed over the VPN tunnel on a
modern system. However, on the older desktop, the choice of cryptographic cipher does
become important: upload speed drops from 760 kbps to 720 kbps when the BlowFish
cipher changes to the AES256 cipher. In particular, when older hardware or certain home
router equipment is used, this can quickly become a bottleneck. Most home wireless routers
capable of running OpenVPN, for example, the wireless routers that support the DD-WRT
or OpenWRT distributions, have a processor speed of about 250 MHz. This processor speed
can quickly become the bottleneck if this router is also used as an OpenVPN server,
especially when multiple clients connect simultaneously.

Performance Tuning

[262]

See also
The Cipher mismatches recipe from Chapter 6, Troubleshooting OpenVPN –
Configurations, which explains in more detail how to troubleshoot cipher
mismatches in the client and server configuration files.

OpenVPN in Gigabit networks
With the advent of high-speed networks, the need for a high-speed VPN has also increased.
OpenVPN is not particularly built for high speeds, but with modern hardware and the right
encryption ciphers it is possible to achieve near-gigabit speeds with OpenVPN 2.4. This
recipe will show you how to achieve these speeds.

Getting ready
We use the following network layout:

The client used in this recipe was a laptop with a Core i7-4810 processor with a maximum
Turboboost speed of 3.8 GHz. The server was a server with an Xeon E5-2697A v4 processor
with a maximum Turboboost speed of 3.6 GHz. Connect the client and the server both to a
Gigabit Ethernet switch. Set up the client and server certificates using the Setting up the
public and private keys recipe from Chapter 2, Client-server IP-only Networks. For this recipe,
the server computer was running CentOS 6 Linux and OpenVPN 2.4.0.

https://cdp.packtpub.com/openvpncookbooksecondedition/wp-admin/post.php?post=234&action=edit#post_391

Performance Tuning

[263]

The client was running Fedora 22 Linux and OpenVPN 2.4.0. Keep the configuration
file basic-udp-server.conf from the Server-side routing recipe from Chapter 2, Client-
server IP-only Networks, as well as the client configuration file basic-udp-client.conf.

How to do it…
Start the server:1.

 [root@server]# openvpn --config basic-udp-server.conf

Next, start the client:2.

 [root@client]# openvpn --config basic-udp-client.conf
 ...
 ... Initialization Sequence Completed

Next, we start iperf on the server:3.

 [server]$ iperf -s

First, we measure the performance outside the tunnel:4.

 [client]$ iperf -c <openvpn-server-ip>
 [3] 0.0-10.0 sec 11 GBytes 900 Mbits/sec

For a Gigabit Ethernet network, this is close to the theoretical limit.

Next, we measure the performance inside the tunnel:5.

 [client]$ iperf -l 1M -n 8M -c 10.200.0.1
 [4] 0.0-10.2 sec 292 MBytes 233 Mbits/sec

This is the performance of a default OpenVPN tunnel.

Stop both the client and server OpenVPN processes.6.
Now, we switch to an AES-256 cipher to make use of the AES-NI instructions that7.
both processors support:

 [server]# openvpn --config basic-udp-server.conf --cipher aes-
 256-cbc

https://cdp.packtpub.com/openvpncookbooksecondedition/wp-admin/post.php?post=234&action=edit#post_391

Performance Tuning

[264]

And the client:

 [client]# openvpn --config basic-udp-client.conf --cipher aes-
 256-cbc
 ...
 ... Initialization Sequence Completed

Again, we measure the performance inside the tunnel, testing both directions:8.

 [client]$ iperf -l 1M -n 8M -c 10.200.0.1 -r
 [4] 0.0-10.2 sec 762 MBytes 610 Mbits/sec
 [5] 0.0-10.2 sec 807 MBytes 646 Mbits/sec

This clearly shows that the AES-NI instructions make a difference.

Stop both the client and server OpenVPN processes again.9.
Now, we switch to AES-256-GCM, a new cipher algorithm supported by10.
OpenVPN 2.4, which is more efficient compared to an AES-256 cipher and SHA2
HMAC function:

 [server]# openvpn --config basic-udp-server.conf --cipher aes-
 256-gcm

And the client:

 [client]# openvpn --config basic-udp-client.conf --cipher aes-
 256-gcm
 ...
 ... Initialization Sequence Completed

Again, we measure the performance inside the tunnel, testing both directions:11.

 [client]$ iperf -l 1M -n 8M -c 10.200.0.1 -r
 [4] 0.0-10.2 sec 1.07 GBytes 859 Mbits/sec
 [5] 0.0-10.2 sec 1.08 GBytes 865 Mbits/sec

The last performance numbers are actually quite close to the maximum speed that can be
achieved over an OpenVPN tunnel on a Gigabit Ethernet network.

How it works…
When processors are used that have a high clock speed and have support for the AES-NI
instructions, OpenVPN and the operating system are capable of keeping up with the flood
of packets that is coming in and needs to be sent out at Gigabit Ethernet speeds.

Performance Tuning

[265]

The new AES-256-GCM encryption cipher especially helps here, as the encryption and
authentication (HMAC) are done in one step. This greatly improves performance, in part
due to shorter computing time and in part due to the fact that this cipher has a smaller
encryption overhead for each packet, leaving more bytes for the actual “payload”.

There's more…
Tuning network performance on Gigabit Ethernet depends heavily on the hardware and
operating system used.

Plain-text tunnel
Another interesting test to run is to turn off all encryption and authentication (--cipher
none --auth none) and then run the iperf tests once more. With the hardware used in
this recipe the following numbers were achieved:

[4] 0.0-10.2 sec 1.09 GBytes 874 Mbits/sec
[5] 0.0-10.2 sec 1.10 GBytes 879 Mbits/sec

These numbers are even closer to the actual line speed, mostly due to the fact that there is
no encryption overhead, leaving optimal space for the “payload”.

Windows performance
The iperf tool is also available on Windows, so the above recipe can also be done using a
Windows client and/or server. The results are very different compared to the Linux client or
server. We can achieve similar “raw” Ethernet speeds by using [WinClient]> iperf -w
128K -c <openvpn-server-ip>.

However, performance over the OpenVPN tunnel, with or without encryption, is well
below 200 Mbps, even with the fastest processors used. Most likely, this is due to a design
issue in the Windows TAP driver. This issue is currently under investigation.

Compression tests
OpenVPN has built-in support for LZO compression if compiled properly. All Windows
binaries have LZO compression available by default. In this recipe, we will show what is
the performance of using LZO compression when transferring both easily compressible
data (such as web pages) and non-compressible data (such as photographs or binaries).

Performance Tuning

[266]

Getting ready
We use the following network layout:

Set up the client and server certificates using the Setting up the public and private keys recipe
from Chapter 2, Client-server IP-only Networks. For this recipe, the server computer was
running CentOS 6 Linux and OpenVPN 2.3.11. The first client was running Fedora 22 Linux
and OpenVPN 2.3.11. Keep the configuration file basic-udp-server.conf from
the Server-side routing recipe from Chapter 2, Client-server IP-only Networks, as well as the
client configuration file basic-udp-client.conf. The recipe was repeated with a second
client running Windows 7 64bit and OpenVPN 2.3.11. Keep the configuration file basic-
udp-server.conf from the Server-side routing recipe from Chapter 2, Client-server IP-only
Networks, as well as the client configuration file basic-udp-client.ovpn from the Using
an ifconfig-pool block .

How to do it…
Append the following line to the basic-udp-server.conf file:1.

 comp-lzo

Save it as example8-6-server.conf.

Start the server:2.

 [root@server]# openvpn --config example8-6-server.conf

https://cdp.packtpub.com/openvpncookbooksecondedition/wp-admin/post.php?post=234&action=edit#post_391
https://cdp.packtpub.com/openvpncookbooksecondedition/wp-admin/post.php?post=234&action=edit#post_391
https://cdp.packtpub.com/openvpncookbooksecondedition/wp-admin/post.php?post=234&action=edit#post_391

Performance Tuning

[267]

Similarly, for the client, add a line to the basic-udp-client.conf file:3.

 comp-lzo

Save it as example8-6-client.conf.

Start the client:4.

 [root@client]# openvpn --config example8-6-client.conf

Next, we start iperf on the server:5.

 [server]$ iperf -s

First, we measure the performance when transferring data outside of the tunnel:6.

 [client]$ iperf -c <openvpn-server-ip>

This results in a throughput of about 50 Mbps over an 802.11n wireless
network.

Next, non-compressible data:7.

 [client]$ dd if=/dev/urandom bs=1024k count=60 of=random
 [client]$ iperf -c 10.200.0.1 -F random
 [4] 0.0-10.0 sec 35.0 MBytes 29.3 Mbits/sec

In the first step, we create a 60MB file with random data. Then, we measure
the iperf performance when transferring this file.

And finally, compressible data (a file filled with zeroes):8.

 [client]$ dd if=/dev/zeroes bs=1024k count=60 of=zeroes
 [client]$ iperf -c 10.200.0.1 -F zeroes
 [5] 0.0- 5.9 sec 58.6 MBytes 83.3 Mbits/sec

The performance of the VPN tunnel when transferring compressible data
such as text files and web pages is shown.

The same measurement can be made using a Windows PC. Add the following9.
line to the basic-udp-client.ovpn file:

 comp-lzo

Save it as example8-6.ovpn.

Performance Tuning

[268]

Start the client.10.

The results of the iperf measurement are slightly different:

Outside the tunnel: 50 Mbps
Non-compressible data: 16 Mbps
Compressible data: 22 Mbps

Clearly, the OpenVPN configuration needs to be optimized, but that is outside the scope of
this recipe. These results do show that for both Windows and Linux clients, there is a
significant performance boost when the data that is sent over the tunnel is easily
compressible.

How it works…
When compression is enabled, all packets that are sent over the tunnel are compressed
before they are encrypted and transferred to the other side. Compression is done using the
LZO library, which is integrated into OpenVPN. This compression is done on-the-fly, which
means that the compression ratios achieved are not as good as when compressing the data
in advance. When transferring text pages, the performance gain is nevertheless significant.

There's more…
When the following configuration directive is used, adaptive compression is enabled by
default:

 comp-lzo

When OpenVPN detects that a particular piece of data is not compressible, it sends the data
to the remote VPN endpoint without compressing it first. By specifying the following on
both ends each packet is always compressed:

 comp-lzo yes

Depending on the type of data that is transferred, the performance is slightly better.

Performance Tuning

[269]

Traffic shaping
In this recipe, we will use traffic shaping to limit the upload speed of an OpenVPN client.
This can be used to throttle the bandwidth of a client to the server, or from client to client.
Note that OpenVPN traffic shaping cannot be used to throttle the download speed of
OpenVPN clients. Throttling download speeds can best be achieved using external traffic
control tools, such as the tc utility on Linux, which is part of the LARTC package.

Getting ready
We use the following network layout:

Set up the client and server certificates using the Setting up the public and private keys recipe
from Chapter 2, Client-server IP-only Networks. For this recipe, the server computer was
running CentOS 6 Linux and OpenVPN 2.3.11. The client was running Windows 7 64 bit
and OpenVPN 2.3.11. Keep the configuration file basic-udp-server.conf from
the Server-side routing recipe from Chapter 2, Client-server IP-only Networks, as well as the
client configuration file basic-udp-client.ovpn from the Using an ifconfig-pool block
recipe.

How to do it…
Append the following line to the basic-udp-server.conf file:1.

 push "shaper 100000"

https://cdp.packtpub.com/openvpncookbooksecondedition/wp-admin/post.php?post=234&action=edit#post_391
https://cdp.packtpub.com/openvpncookbooksecondedition/wp-admin/post.php?post=234&action=edit#post_391

Performance Tuning

[270]

This will throttle the upload speed of the VPN clients to 100,000 bytes per
second (100 kbps). Save it as example8-7-server.conf.

Start the server:2.

 [root@server]# openvpn --config example8-7-server.conf

Start the client:3.

Next, we start iperf on the server:4.

 [server]$ iperf -s

When we run iperf on the Windows PC, the performance is close to 100 KB/s:5.

The PNG number of bytes being sent over the tunnel, including encryption6.
overhead, is actually very close to 100,000 bytes per second.

Performance Tuning

[271]

How it works…
When the OpenVPN client connects to the server, the server pushes out an option to shape
outgoing traffic over the VPN tunnel to 100 KB/s. Whenever traffic is sent over the tunnel,
the OpenVPN client itself limits the outgoing traffic to a maximum of 100 KB/s. The
download speed is not affected by this, and note that the following directive cannot be used
on the OpenVPN server itself:

shaper 100000

To throttle traffic leaving the server, more advanced traffic control tools such as tc for
Linux should be used.

Tuning UDP-based connections
In this recipe, we focus on some of the basic techniques for optimizing UDP-based VPN
tunnels. These techniques need to be applied with care, as there is no fool-proof method for
optimizing OpenVPN performance. The actual performance gain varies with each network
setup. Therefore, this recipe only shows some of the configuration directives that can be
used for this optimization.

Getting ready
We use the following network layout:

Performance Tuning

[272]

Set up the client and server certificates using the Setting up the public and private keys recipe
from Chapter 2, Client-server IP-only Networks. For this recipe, the server computer was
running CentOS 6 Linux and OpenVPN 2.3.11. The client was running Fedora 22 Linux and
OpenVPN 2.3.11. Keep the configuration file basic-udp-server.conf from the Server-side
routing recipe from Chapter 2, Client-server IP-only Networks, as well as the client
configuration file basic-udp-client.conf.

How to do it…
Append the following line to the basic-udp-server.conf file:1.

 fragment 1400

Save it as example8-8-server.conf.2.
Start the server:3.

 [root@server]# openvpn --config example8-8-server.conf

Similarly, for the client, add a line to the basic-udp- client.conf file:4.

 fragment 1400

Save it as example8-8-client.conf.5.
Start the client:6.

 [root@client]# openvpn --config example9-6-client.conf

Next, we start iperf on the server:7.

 [server]$ iperf -s

First, we measure the performance outside the tunnel:8.

 [client]$ iperf -c <openvpn-server-ip>
 [4] 0.0-16.7 sec 8.00 MBytes 4.03 Mbits/sec

This actually measures the performance of data being sent to the server. The
cable network used in this recipe has a theoretical upload limit of 4 Mbps.
Note that this result is nearly the same as found in the recipe Optimizing
performance using iperf.

https://cdp.packtpub.com/openvpncookbooksecondedition/wp-admin/post.php?post=234&action=edit#post_391
https://cdp.packtpub.com/openvpncookbooksecondedition/wp-admin/post.php?post=234&action=edit#post_391

Performance Tuning

[273]

Next, we measure the performance inside the tunnel:9.

 [client]$ iperf -c 10.200.0.1
 [4] 0.0-18.3 sec 8.00 MBytes 3.66 Mbits/sec

A slight penalty is incurred due to the OpenVPN tunnel, but the results are
nearly identical to the results found in the recipe Optimizing performance using
iperf.

Fragmentation does have an effect on the ping round-trip times, however.

For various values of the fragment option, run the ping command from the10.
client to server:

 [client]$ ping -c 10 10.200.0.1

The results are listed in the following table:

Fragmentation size Ping result

Default (1500) 9.4 +/- 1.0 ms

1400 9.9 +/- 1.5 ms

400 19.2 +/- 8 ms

Thus, adding the fragment option to the server configuration is not a viable option for this
network setup. However, in other network setups, this might improve performance.

How it works…
The OpenVPN configuration directive fragment 1400 causes all encrypted packets that
are larger than 1400 bytes to be fragmented. If the network latency is low enough, this does
not have a noticeable effect on performance, as the iperf results. By lowering the
fragmentation size, packets are split into more and more packets. This causes the round-trip
time for larger packets to increase. If the network latency is already high, this will cause
even more latency issues. Hence, the fragment option and associated mssfix option must
be used with care.

Performance Tuning

[274]

There's more…
The fragment directive is often used in conjunction with the mssfix directive:

mssfix [maximum-segment-size]

This directive announces to TCP sessions running over the tunnel that they should limit
their send packet sizes so that after OpenVPN has encapsulated them; the resulting UDP
packet size that OpenVPN sends to its peer will not exceed the maximum segment size. It is
also used internally by OpenVPN to set the maximum segment size of outbound packets. If
no maximum segment size is specified, the value from the fragment directive is used.

Ideally, the mssfix and fragment directives are used together, where mssfix will try to
keep TCP from needing packet fragmentation in the first place, and if big packets come
through anyhow (for example, from protocols other than TCP), the fragment directive will
internally fragment them.

See also
The next recipe in this chapter, which explains how to tune TCP-based
connections in a very similar manner

Tuning TCP-based connections
In this recipe, we focus on some of the basic techniques for optimizing TCP-based VPN
tunnels. In a TCP-based VPN setup, the connection between the VPN endpoints is a regular
TCP connection. This has advantages and drawbacks. The main advantage is that it is often
easier to set up a TCP connection than a UDP connection, mostly due to firewall
restrictions. The main drawback of tunneling TCP traffic over a TCP-based tunnel is that
there is chance of severe performance penalties, especially when the network connection is
poor. This performance penalty is caused by the tcp-over-tcp syndrome. The TCP protocol
guarantees the ordered delivery of packets, thus if a packet is dropped along the way, the
packet will be resent. Once the new packet is received, the packet order is restored. Until
that time, all packets after the lost packet are on hold. The problem with tunneling TCP
traffic over a TCP connection is that both layers want to guarantee ordered packet delivery.
This can lead to a large amount of retransmits and hence to a large performance penalty.

Performance Tuning

[275]

When tuned correctly, however, an OpenVPN tunnel over a TCP connection can achieve
the same performance as an OpenVPN tunnel over a UDP connection. In this recipe, we will
show some techniques for tuning such a TCP-based OpenVPN connection.

Getting ready
We use the following network layout:

Set up the client and server certificates using the Setting up the public and private keys recipe
from Chapter 2, Client-server IP-only Networks. For this recipe, the server computer was
running CentOS 6 Linux and OpenVPN 2.3.11. The client was running Windows 7 64bit and
OpenVPN 2.3.11. Keep the configuration file basic-udp-server.conf from the Server-side
routing recipe from Chapter 2, Client-server IP-only Networks, as well as the client
configuration file basic-udp-client.ovpn from the Using an ifconfig-pool block recipe.

How to do it…
Create the server configuration file:1.

 proto tcp
 port 1194
 dev tun
 server 10.200.0.0 255.255.255.0

 ca /etc/openvpn/cookbook/ca.crt
 cert /etc/openvpn/cookbook/server.crt
 key /etc/openvpn/cookbook/server.key
 dh /etc/openvpn/cookbook/dh2048.pem

https://cdp.packtpub.com/openvpncookbooksecondedition/wp-admin/post.php?post=234&action=edit#post_391
https://cdp.packtpub.com/openvpncookbooksecondedition/wp-admin/post.php?post=234&action=edit#post_391

Performance Tuning

[276]

 tls-auth /etc/openvpn/cookbook/ta.key 0

 persist-key
 persist-tun
 keepalive 10 60

 topology subnet

 user nobody
 group nobody

 daemon
 log-append /var/log/openvpn.log

 tcp-nodelay

Save it as example8-9-server.conf.2.
Start the server:3.

 [root@server]# openvpn --config example8-9-server.conf

Next, create the client configuration file:4.

 client
 proto tcp
 remote openvpnserver.example.com
 port 1194

 dev tun
 nobind

 remote-cert-tls server
 ca "c:/program files/openvpn/config/ca.crt"
 cert "c:/program files/openvpn/config/client2.crt"
 key "c:/program files/openvpn/config/client2.key"
 tls-auth "c:/program files/openvpn/config/ta.key" 1

Save it as example8-9.ovpn.5.

Performance Tuning

[277]

Start the client:6.

Next, start iperf on the server:7.

 [server]$ iperf -s

Then, measure the performance of the tunnel:8.

 [WinClient]> iperf -c 10.200.0.1 -w 128k

On this particular network, the following settings were tested:

Protocol Result

UDP 147 Mbits/sec

TCP 115 Mbits/sec

TCP with tcp-nodelay 146 Mbits/sec

As can be seen, the performance of running OpenVPN over TCP is almost identical to the
performance of OpenVPN over UDP, when the --tcp-nodelay directive is used.

How it works…
When OpenVPN uses TCP as its underlying protocol, all packets are transferred over a
regular TCP connection. By default, TCP connections make use of the Nagle algorithm,
where smaller packets are held back and collected before they are sent. For an OpenVPN
tunnel, this has an adverse effect on performance in most cases, hence it makes sense to
disable the Nagle algorithm. By adding the --tcp-nodelay directive, we disable the Nagle
algorithm and we see an immediate increase in performance.

Performance Tuning

[278]

There's more…
The two important parameters that can be tweaked for TCP-based connections are:

The --tcp-nodelay directive
The MTU size of the TUN/TAP-Win32 adapter via either the --tun-mtu or
 --link-mtu directives

On Linux, the MTU size of the TUN (or TAP) adapter can be adjusted on-the-fly, but on
Windows, this is not as easy. OpenVPN must be configured to match the MTU size as
specified on the server. Before the new MTU size is used, however, the MTU of the TAP
adapter must be adjusted. Starting with Windows Vista, it is now also possible to do this
on-the-fly, using the netsh command:

First, find the right sub-interface number:

 [winclient]C:> netsh interface ipv4 show subinterfaces

Next, in order to change the MTU size of a sub-interface, use:

 [winclient]C:> netsh interface ipv4 set subinterface "1"
 mtu=1400

Note that these commands must be run with elevated privileges.

If the MTU setting of the Windows TAP-Win32 adapter is larger than the MTU size
configured by OpenVPN, the following message can appear in the OpenVPN log file:

... read from TUN/TAP [State=AT?c Err=[c:\src\21\tap-win32\tapdrvr.c/2447]
#O=4 Tx=[29510,0] Rx=[15309,0] IrpQ=[0,1,16] PktQ=[0,22,64] InjQ=[0,1,16]]:
More data is available. (code=234)

For this particular network, all changes made to the MTU size (with the appropriate
Windows reboot) did not have a positive effect on performance.

Analyzing performance using tcpdump
In this recipe, we will analyze the performance of an OpenVPN setup using the tcpdump
utility. It is also possible to use the Wireshark utility, which is available for Linux,
Windows, and Mac OS X. While this recipe does not cover any new OpenVPN
functionality, it is useful to show how such an analysis can be made.

Performance Tuning

[279]

Getting ready
We use the following network layout:

Set up the client and server certificates using the Setting up the public and private keys recipe
from Chapter 2, Client-server IP-only Networks. For this recipe, the server computer was
running CentOS 6 Linux and OpenVPN 2.3.11. The client was running Fedora 22 Linux and
OpenVPN 2.3.11. Keep the configuration file example8-8-server.conf from the Tuning
UDP-based connections recipe from Chapter 2, Client-server IP-only Networks, as well as the
client configuration, example8-8-client.conf, from the same recipe.

How to do it…
Start the server:1.

 [root@server]# openvpn --config example8-8-server.conf

Next, start the client:2.

 [root@client]# openvpn --config example8-8-client.conf

On the server, run tcpdump to watch for the incoming packets on the network3.
interface (not the tunnel interface itself):

 [root@server]# tcpdump -nnl -i eth0 udp port 1194

This instructs tcpdump to listen on the local network interface for all UDP
traffic on port 1194, which is the OpenVPN default.

https://cdp.packtpub.com/openvpncookbooksecondedition/wp-admin/post.php?post=234&action=edit#post_391
https://cdp.packtpub.com/openvpncookbooksecondedition/wp-admin/post.php?post=234&action=edit#post_391

Performance Tuning

[280]

From the client, ping the server's VPN IP address with two different sizes:4.

 [client]$ ping -c 2 -s 1300 10.200.0.1
 [client]$ ping -c 2 -s 1400 10.200.0.1

The following packets are seen in the tcpdump screen:

The first ICMP packets are sent unfragmented, as they are smaller than 1400 bytes. The
second set of encrypted ICMP packets is larger than the fragment size (1400) and hence are
split into two parts.

How it works…
The OpenVPN configuration directive fragment 1400 causes all the encrypted packets
that are larger than 1400 bytes to be fragmented. When watching the encrypted traffic, this
can be verified by pinging the OpenVPN server. Note that packets which need to be
fragmented are fragmented evenly: all packets have the same size.

Also, note that the following command causes the encrypted packet to be larger than 1400
bytes:

 [client]$ ping -c 2 -s 1400 10.200.0.1

The encryption needed for the secure tunnel adds extra overhead to the packets that are
transmitted. This is one of the root causes for a performance penalty when using VPN
tunnels (not just OpenVPN) compared to non-encrypted traffic. In most networks, this
overhead is not noticed, but it always exists.

Performance Tuning

[281]

See also
The Tuning UDP-based connections recipe in this chapter, which explains how to
use the fragment directive

9
OS Integration

In this chapter, we will cover the following recipes:

Linux – using NetworkManager
Linux – using pull-resolv-conf
Windows – elevated privileges
Windows – using the CryptoAPI store
Windows – updating the DNS cache
Windows – running OpenVPN as a service
Windows – public versus private network adapters
Windows – routing methods
Windows 8+- ensuring DNS lookups are secure
Android- using the OpenVPN for Android clients
Push-peer-info – pushing options to Android clients

Introduction
In this chapter, we will focus on how to use OpenVPN on Linux, Windows, and Android.
For each operating system, an entire chapter could be written to describe the intricacies of
running OpenVPN in both the client and server mode, but as space is limited, we will focus
only on the interaction of the OpenVPN client with the OS. The purpose of the recipes in
this chapter is to outline some of the common pitfalls when running OpenVPN on a
particular platform. The recipes focus mainly on the configuration of OpenVPN itself, not
on how to integrate a working VPN setup into the rest of the network infrastructure.

OS Integration

[283]

Linux – using NetworkManager
When Linux is used as a desktop operating system, the network configuration is configured
using the Linux NetworkManager in most of the cases. This package allows a non-root user
to start and stop the network connections, connect and disconnect from wireless networks,
and also to set up several types of VPN connections, including OpenVPN. In this recipe, we
will show how to configure an OpenVPN connection using the GNOME variant of the
NetworkManager.

Getting ready
Set up the client and server certificates using the first recipe from Chapter 2, Client-server
IP-only Networks. For this recipe, the server computer was running CentOS 6 Linux and
OpenVPN 2.3.11. The client was running Fedora 22 Linux and OpenVPN 2.3.11. This
version of Linux comes with NetworkManager 1.0.8, including the NetworkManager-
openvpn plugin. The NetworkManager-openvpn plugin is not installed by default and
needs to be explicitly added to the system. Keep the configuration file, basic-udp-
server.conf, in the Server-side routing recipe from Chapter 2, Client-server IP-only
Networks, at hand.

How to do it…
Start the NetworkManager configuration screen by right-clicking on the1.
NetworkManager icon in the taskbar and selecting Edit Connections. A window
will pop up.
Choose the VPN tab to set up a new VPN connection:2.

OS Integration

[284]

Click on the Add button to bring up the next screen:3.

Select the OpenVPN as the VPN type and click on the Create… button. If the4.
VPN connection type OpenVPN is not available, then the NetworkManager-
openvpn plugin is not installed.
Fill in the details of the VPN tab of the next window:5.

OS Integration

[285]

The Gateway is the hostname or IP address of the OpenVPN server.
The Type of authentication is Certificates (TLS). Then, for the User
Certificate, CA Certificate, and Private Key fields, browse to the directory
where the client files client1.crt, ca.crt, and client1.key are located,
respectively. Fill in the Private Key Password fields, if required. Do not click
on the Save button just yet, click on Advanced… instead.

In the next window, go to the Security tab:6.

Select the encryption cipher and HMAC authentication protocol to use for the7.
connection and then click on OK.
Then, go to the TLS Authentication tab.8.

OS Integration

[286]

Enable Verify peer (server) certificate usage signature, then select Use 9.
additional TLS authentication, and browse to the location of the ta.key file.
Choose 1 for the key direction.
Click on OK when done and then click on Apply to save the new VPN10.
connection.
Next, start the server:11.

 [root@server]# openvpn --config basic-udp-server.conf

And finally, on the client, start the VPN connection by clicking on the12.
NetworkManager icon, choosingVPN Connections and selecting Example 9-1:

You can verify whether the VPN connection is established correctly by pinging the VPN
server IP.

How it works…
The NetworkManager-openvpn plugin is a GUI for setting up an OpenVPN client
configuration file. All the settings made are the equivalent of setting up the client
configuration file as done in the Server-side routing recipe from Chapter 2, Client-server IP-
only Networks.

There's more…
The NetworkManager-openvpn plugin supports some advanced configuration settings:

https://cdp.packtpub.com/openvpncookbooksecondedition/wp-admin/post.php?post=393&action=edit#post_391

OS Integration

[287]

Setting up routes using NetworkManager
The NetworkManager-openvpn plugin can also be used to set up VPN-specific routes.
Open the main VPN configuration screen again and go to the IPv4 Settings tab. Click on
the Routes… button on this screen:

A new window will appear:

OS Integration

[288]

Routes pushed by the server can be overruled using the Ignore automatically obtained
routes option. By default, the NetworkManager-openvpn plugin will enable redirect-
gateway, even if it is not pushed by the server. This behavior can be overruled by checking
the Use this connection only for resources on its network checkbox.

DNS settings
The NetworkManager-openvpn plugin also updates the /etc/resolv.conf file if the
OpenVPN server pushes out DNS servers using the following directive:

push "dhcp-option DNS a.b.c.d"

Scripting
Note that NetworkManager does not allow scripting or plugins on the client side, as they
are a security risk when configured by a non-root user.

Linux – using pull-resolv-conf
One of the most common pitfalls when setting up a VPN connection on Linux is when the
OpenVPN server pushes out new DNS settings. In the previous recipe, we saw that the
NetworkManager-openvpn plugin also updated the system configuration file that
contained the DNS setting, /etc/resolv.conf. If the command line is used, this is not
done automatically. By default, OpenVPN comes with two scripts to add and remove DNS
servers from the /etc/resolv.conf file. This recipe will show how to use these scripts.

OS Integration

[289]

Getting ready
We will use the following network layout:

Set up the client and server certificates using the first recipe from Chapter 2, Client-server
IP-only Networks. For this recipe, the server computer was running CentOS 6 Linux and
OpenVPN 2.3.11. The client was running Fedora 22 Linux and OpenVPN 2.3.11. Keep
the basic-udp-server.conf configuration file from the Server-side routing recipe
from Chapter 2, Client-server IP-only Networks, as well as the basic-udp-client.conf
client configuration file at hand.

How to do it…
Append the following line to the basic-udp-server.conf file:1.

 push "dhcp-option DNS 10.198.0.1"

Here, 10.198.0.1 is the address of a DNS server on the VPN server LAN.
Save it as example9-2-server.conf.

Start the server:2.

 [root@server]# openvpn --config example9-2-server.conf

Similarly, for the client, add the following lines to the basic-udp-client.conf3.
file:

 script-security 2
 up "/etc/openvpn/cookbook/client.up"
 down "/etc/openvpn/cookbook/client.down"

OS Integration

[290]

Save it as example9-2-client.conf. Copy over the client.up4.
and client.down files from the OpenVPN contrib directory and make them
executable. On CentOS 6 and Fedora 22, these files are located in
the /usr/share/doc/openvpn-2.3.11/contrib/pull-resolv-conf
directory:

 [root@client]# cd /etc/openvpn/cookbook
 [root@client]# cp /usr/share/doc/openvpn-2.3.11/contrib/pull-
 resolv-conf/client.* .
 [root@client]# chmod 755 client.*

And finally, start the client:5.

 [root@client]# openvpn --config example9-2-client.conf

After the VPN connection comes up, check the contents of the /etc/resolv.conf file. The
first line should contain the DNS server as specified by the OpenVPN server:

nameserver 10.198.0.1

When the VPN connection is terminated, the entry is removed again.

How it works…
The scripts supplied with OpenVPN parse the environment variable, foreign_option_*,
and look for DOMAIN and DNS settings. These settings are then written out to the
beginning of the /etc/resolv.conf file. This causes the DNS server and the DOMAIN
pushed by the OpenVPN server to take precedence over the system's DNS and DOMAIN
settings.

When the VPN connection is dropped, the same settings are removed from the
/etc/resolv.conf file.

There's more…
Note that when the NetworkManager-openvpn plugin is used, these scripts are not
necessary, as the NetworkManager itself updates the /etc/resolv.conf file.

OS Integration

[291]

Windows – elevated privileges
With the introduction of Windows Vista, Microsoft introduced User Access Control (UAC).
UAC is meant to safeguard users from running programs that can modify the operating
system itself. Before such a program is run, a privilege elevation is required even if the user
has full administrator rights. A dialog box appears that the user must click on before the
execution begins. In order to run OpenVPN, elevated privileges are needed, as OpenVPN
wants to open a system device and start a VPN connection. Especially if routes need to be
added to the system, elevated privileges are essential.

With OpenVPN 2.3+, privilege elevation is built into the OpenVPN GUI application. That is,
even if the Run as Administrator flag is turned off, the OpenVPN GUI application will still
request elevated privileges when it is launched. This recipe will demonstrate this behavior,
which was not present in older versions of OpenVPN.

Getting ready
Set up the client and server certificates using the first recipe from Chapter 2, Client-server
IP-only Networks. For this recipe, the server computer was running CentOS 6 Linux and
OpenVPN 2.3.11. The client computer was running Windows 7 SP1 and OpenVPN 2.3.11.
Keep the configuration file, basic-udp-server.conf, from the Server-side routing recipe
from Chapter 2, Client-server IP-only Networks. For the client, keep the configuration
file, basic-udp-client.ovpn, from the Using an ifconfig-pool block recipe from Chapter
2, Client-server IP-only Networks at hand.

How to do it…
First, start the server:1.

 [root@server]# openvpn --config basic-udp-server.conf

Make sure that the OpenVPN is not running and that the tray icon is not present.2.
Before starting the OpenVPN GUI, right-click on the OpenVPN GUI icon that3.
was placed on your desktop after installing the OpenVPN 2.3.11 installer for
Windows.
In the Properties screen that comes up, click on the Compatibility tab and4.
disable Run this program as an administrator:

OS Integration

[292]

Click on OK.5.
Start the OpenVPN GUI. Note that it will still prompt for permissions (the6.
following screenshot is for Windows Vista, but a similar window will pop up for
Windows 7+):

Click on Continue to start the OpenVPN GUI as usual.7.

OS Integration

[293]

Start the OpenVPN client by launching the example5-1 configuration file:8.

Verify that the VPN connection is established and that the log9.
file, c:\temp\openvpn.log, has been created.

How it works…
When the OpenVPN GUI application is launched, the user must always confirm that it can
run with elevated privileges. This is now built into the OpenVPN GUI application itself,
and is visible by noticing the shield at the right bottom of the application's icon:

After that, the OpenVPN GUI can launch other executables that will also inherit these
privileges. When the GUI launches the openvpn.exe process, it can open the VPN adapter,
alter the routing tables, and run the up and down scripts.

Windows – using the CryptoAPI store
OpenVPN has the capability of using the Windows CryptoAPI store to retrieve the public
and private key needed for setting up a connection. This improves security somewhat, as
the CryptoAPI store is more secure than the plaintext .crt and .key files that are normally
used to set up an OpenVPN connection.

OS Integration

[294]

In this recipe, we will configure an OpenVPN client to retrieve the required information
from the CryptoAPI store when connecting to the server. This recipe was tested on
Windows 7, but it will also work on other versions of Windows.

Getting ready
Set up the client and server certificates using the first recipe from Chapter 2, Client-server
IP-only Networks. For this recipe, the server computer was running CentOS 6 Linux and
OpenVPN 2.3.11. The client computer was running Windows 7 SP1 and OpenVPN 2.3.11.
Keep the configuration file, basic-udp-server.conf, from the Server-side routing recipe
in Chapter 2, Client-server IP-only Networks at hand.

How to do it…
First, we need to import the client certificate into the CryptoAPI store. In order to1.
do that we must convert the existing client2.crt and client2.key files to
PKCS12 format. Open a Windows command shell and change the directory to the
location where these files are located:

 [winclient]C:> cd C:\Program Files\OpenVPN\config
 [winclient]C:\Program Files\OpenVPN\config>..\bin\openssl
 pkcs12
 -export -in client2.crt -inkey client2.key -out client2.p12
 Enter pass phrase for client2.key: [existing password]
 Enter Export Password: [new export password]
 Verifying - Enter Export Password: [repeat export password]

Next, import the PKCS12 file into the Windows CryptoAPI store:2.

 [winclient]C:\Program Files\OpenVPN\config>start client2.p12

The certificate import wizard will start.

OS Integration

[295]

Click on Next on the first screen and again click on Next on the second screen.3.
Then, you must supply the export password from the previous step:

If you select the Enable strong private key protection. You will be
prompted every time the private key is used by an application if you
enable this option checkbox, the certificate and private key are even better
protected, but you will be required to retype the password every time
OpenVPN starts.

Click on Next. In the next screen, select the default option, Automatically select4.
the certificate store, and click on Next once more. By clicking on Finish in the
next screen, the certificate import is completed.

OS Integration

[296]

Create the client configuration file:5.

 client
 proto udp
 remote openvpnserver.example.com
 port 1194

 dev tun
 nobind

 remote-cert-tls server
 tls-auth "c:/program files/openvpn/config/ta.key" 1
 ca "c:/program files/openvpn/config/ca.crt"
 cryptoapicert "SUBJ:Client2"

Save the configuration file as example9-4.ovpn. Start the server:6.

 [root@server]# openvpn --config basic-udp-server.conf

Start the VPN connection using the OpenVPN GUI.7.

The VPN connection should be established without asking for a private key password. If
the CryptoAPI option, Enable strong private key protection, was enabled, a separate dialog
will pop up to ask for the CryptoAPI password.

OS Integration

[297]

How it works…
The Windows OpenVPN client software is capable of extracting a certificate and public key
from the Windows CryptoAPI store if either the certificate subject name is specified using
the keyword, SUBJ:, or if the certificate thumbprint or fingerprint is specified using the
keyword, THUMB:. After retrieving the certificate and private key from the CryptoAPI store,
the VPN connection is established in exactly the same manner as if a plaintext certificate
and private key files had been used.

There's more…
There are several small yet important details when using the Windows CryptoAPI store.
We will cover this in the following sections.

The CA certificate file
Note that it is still required to specify the CA certificate using the following line:

ca c:/program files/openvpn/config/ca.crt

In theory, it would be possible to also retrieve the CA certificate from the CryptoAPI store,
but this is currently not implemented in OpenVPN. Also, note that the CA certificate file
needs to contain the certificate authority that was used to sign the server-side certificate, not
the client-side certificate.

Certificate fingerprint
Instead of supplying cryptoapicert SUBJ:<subject name>, it is also possible to
specify cryptoapicert THUMB:<fingerprint>.

The fingerprint or thumbprint of an X509 certificate can be retrieved both by either looking
up the Thumb property for the imported certificate in the Windows Certificate store or by
typing the OpenSSL command:

C:\Program Files\OpenVPN\config>..\bin\openssl x509 \
 -fingerprint -noout -in client2.crt
SHA1
Fingerprint=91:93:72:7D:0D:D7:33:58:81:DA:DE:2C:17:1E:36:43:58:40:BF:50

OS Integration

[298]

Windows – updating the DNS cache
A frequently recurring question on the OpenVPN users mailing lists is related to the DNS
name resolution on Windows after the VPN connection is established. If the OpenVPN
server pushes out a new DNS server, then this is automatically picked up by the OpenVPN
client, yet the name resolution does not always work right after establishing the connection.
This has little to do with OpenVPN and more to do with the way the Windows DNS
caching service works. As this question comes up quite regularly, a new directive,
register-dns, was added in OpenVPN 2.1.3. When this directive is specified, OpenVPN
updates the Windows DNS cache and registers the VPN IP address in the Windows DNS
tables. As this feature was introduced only recently, this recipe will also show how the
Windows DNS cache can be updated using a script when the VPN connection is
established. Some users disable the DNS caching service altogether, which seems to have
little impact on the operating system, except for a small performance penalty when using a
slow network.

Getting ready
Set up the client and server certificates using the first recipe from Chapter 2, Client-server
IP-only Networks. For this recipe, the server computer was running CentOS 6 Linux and
OpenVPN 2.3.11. The client computer was running Windows 7 SP1 and OpenVPN 2.3.11.
Keep the server configuration file, example9-2-server.conf, from the Linux: using pull-
resolv-conf recipe at hand, as well as the client configuration file, basic-udp-client.ovpn,
from the Using an ifconfig-pool block recipe in Chapter 2, Client-server IP-only Networks.

How to do it…
Start the server:1.

 [root@server]# openvpn --config example9-2-server.conf

Add a line to the basic-udp-client.ovpn configuration file:2.

 register-dns

OS Integration

[299]

Save this configuration file as example9-5.ovpn. Start the OpenVPN client.3.

The OpenVPN GUI status window will show that the Windows service
dnscache has restarted:

After the VPN connection is established, verify that the name resolution is
using the VPN-supplied DNS server, for example, by using the nslookup
command.

How it works…
When the VPN connection is established, the OpenVPN client software sends a DHCP
packet to the TAP-Win32 adapter with the IP address, default gateway, and the other
network-related information, such as a new DNS server. This information is picked up by
the operating system but the local DNS caching service is not notified immediately. The
register-dns directive executes the following commands:

 net stop dnscache
 net start dnscache
 ipconfig /flushdns
 ipconfig /registerdns

By forcing a restart of the DNS caching service, the DNS server supplied by the VPN
connection is used immediately.

OS Integration

[300]

See also
The Windows 8+ – ensuring DNS lookups are secure recipe later in this chapter,
which goes into detail of how to ensure that DNS lookups are passed over the
VPN tunnel only

Windows – running OpenVPN as a service
One of the lesser known features of the Windows version of OpenVPN is its ability to run it
as a service. This allows OpenVPN to start and establish a VPN connection without a user
logging in on the system. The OpenVPN service is installed by default, but is not started
automatically.

In this recipe, we will show how the OpenVPN service can be controlled using the
OpenVPN GUI application and how to perform troubleshooting on the service.

Getting ready
Set up the client and server certificates using the first recipe from Chapter 2, Client-server
IP-only Networks. For this recipe, the server computer was running CentOS 6 Linux and
OpenVPN 2.3.11. The client computer was running Windows 7 SP1 and OpenVPN 2.3.11.
Keep the configuration file, basic-udp-server.conf, from the Server-side routing recipe
in Chapter 2, Client-server IP-only Networks at hand. For the client, keep the configuration
file, basic-udp-client.ovpn, from the Using an ifconfig-pool block recipe in Chapter
2, Client-server IP-only Networks at hand.

How to do it…
Start the server:1.

 [root@server]# openvpn --config basic-udp-server.conf

OS Integration

[301]

Before starting the OpenVPN GUI application on the client side, we first launch2.
the Windows registry editor, regedit (using elevated privileges). Find
the HKEY_LOCAL_MACHINE\SOFTWARE\OpenVPN-GUI key.

Take a note of the config_dir registry key, which is normally set3.
to C:\Program Files\OpenVPN\config.
Set the registry key allow_service to 1. Also, take note of the registry4.
key, log_dir, which is normally set to C:\Program Files\OpenVPN\log.
Now, browse to the registry key, HKEY_LOCAL_MACHINE\SOFTWARE\OpenVPN,5.
and check the config_dir and log_dir keys again. They should be pointing to
the same directories as for the OpenVPN GUI application.

OS Integration

[302]

Close the registry editor.6.
Launch the OpenVPN GUI. Right-click on the icon in the taskbar. A new menu 7.
option will have appeared.

But do not start the service yet.

First, modify the client configuration file, basic-udp-client.ovpn, by8.
changing the following lines:

 cert "c:/program files/openvpn/config/client2.crt"
 key "c:/program files/openvpn/config/client2.key"

Change these to the following:

 cert "c:/program files/openvpn/config/client1.crt"
 key "c:/program files/openvpn/config/client1.key"

The client2.key client certificate from Chapter 2, Client-server IP-only
Networks, is protected by a password, whereas the client1.key file is not.
Save the configuration file as example9-6.ovpn.

Move all other .ovpn files to another directory to make sure that this is the9.
only .ovpn file in the config directory.
Now, start the OpenVPN service. After a while, the VPN connection will be10.
established, as can be seen on both the client and the server in the log files.

OS Integration

[303]

How it works…
A Windows service is launched at system startup before a user is logged in. The OpenVPN
service scans the directory pointed to by the registry key,
HKEY_LOCAL_MACHINE\SOFTWARE\OpenVPN\config_dir.

This starts an OpenVPN process for each file with the .ovpn extension in that directory.
The output of each of these processes is logged into the log directory pointed to by the
registry key:

HKEY_LOCAL_MACHINE\SOFTWARE\OpenVPN\log_dir

Here, the log filename is the same as the configuration name, but now with the .log
extension. For this recipe, the configuration file was C:\Program
Files\OpenVPN\config\example9-6.ovpn and the log file was C:\Program
Files\OpenVPN\log\example9-6.log.

There is no need to launch the OpenVPN GUI to start these connections, but the GUI
application does offer a convenient method of managing the OpenVPN service, if the right
registry key is added.

There's more…
There are a few important notes when using the OpenVPN service, which are outlined here.

OS Integration

[304]

Automatic service startup
To make the OpenVPN service start at system startup, open the Services administrative
control panel by navigating to Control Panel | Administrative Tools | Services. Double-
click on the OpenVPN Service to open the properties and set the Startup type field
to Automatic:

Click on OK and close the Services administrative control panel. Reboot Windows and
verify on the server side that the client is connecting at system startup.

OS Integration

[305]

OpenVPN user name
When the OpenVPN service is used, the corresponding OpenVPN processes are normally
run under the account SYSTEM, as can be seen in the following screenshot:

This has some implications regarding the permissions on the configuration files. Special
care also needs to be taken when using the cryptoapicert directive, as by default, those
certificates end up in the user certificate store, which is not accessible to the SYSTEM
account. It is possible to use the cryptoapicert directive, but the imported certificate
must be installed as a (local) system certificate and not as a user certificate.

See also
The Windows – using the CryptoAPI store recipe earlier in this chapter, which
explains how to use the Windows CryptoAPI store to store the user certificate
and private key

OS Integration

[306]

Windows – public versus private network
adapters
With Windows Vista and 7, Microsoft introduced the concept of network classes. Network
interfaces can be part of a Private or Public network. When using OpenVPN, one must be
careful in which type of network the adapter is placed. By default, OpenVPN's TAP-Win32
adapter is placed in a Public network, which has a side-effect that it is not possible to
mount file shares. In this recipe, we will show how to change the network type so that the
trusted services such as file sharing are possible over a VPN connection. While this has little
to do with configuring the OpenVPN per se, this issue comes up often enough to warrant a
recipe.

Getting ready
Set up the client and server certificates using the first recipe from Chapter 2, Client-server
IP-only Networks. For this recipe, the server computer was running CentOS 6 Linux and
OpenVPN 2.3.11. The client computer was running Windows 7 SP1 and OpenVPN 2.3.11.
Keep the configuration file, basic-udp-server.conf, from the Server-side routing recipe
in Chapter 2, Client-server IP-only Networks at hand. For the client, keep the configuration
file, basic-udp-client.ovpn, from the Using an ifconfig-pool block recipe in Chapter
2, Client-server IP-only Networks at hand.

How to do it…
Append the following line to the basic-udp-server.conf file:1.

 push "route 0.0.0.0 0.0.0.0 vpn_gateway 300"

Save it as example9-7-server.conf. Start the server:2.

 [root@server]# openvpn --config example9-7-server.conf

On the Windows client, launch the OpenVPN GUI.3.
After the VPN connection is established, a window will pop up asking you what4.
type of network this is. For Windows 7, you can choose Home, Work,
or Public; for Windows 8+, the choice is either Private or Public.

OS Integration

[307]

Select the Work network, and then open the Network and Sharing Center:5.

How it works…
With Windows 7+, each network type has different access rights. The network type with the
fewest rights is Public, which means that the applications can set up TCP/IP connections,
but they cannot access any of the resources available in the Work or Private networks, such
as local printers and the local disks. When sharing resources that are on the same network
as the OpenVPN client, this can become an issue.

Windows determines the type of network by looking at whether a default gateway is
present for that network. If no default gateway is specified, the network is considered to be
untrustworthy and hence it is made public. There is no option to easily change this
afterward.

To overcome this peculiarity, we supply a default gateway with a very high metric:

push "route 0.0.0.0 0.0.0.0 vpn_gateway 300"

Using a very high metric, we avoid the problem that all network traffic is routed over the
VPN, which can lead to biting-your-own-tail problems.

OS Integration

[308]

See also
The Windows – elevated privileges recipe earlier in this chapter, which explains in
more detail about how to run the OpenVPN GUI application with elevated
privileges

Windows – routing methods
When routes are pushed to a Windows client, there are two methods for adding these
routes to the system routing tables:

Using the IPAPI helper functions (the default)

Using the ROUTE.EXE program

In most cases, the IPAPI method works fine, but sometimes, it is necessary to overrule this
behavior. In this recipe, we will show how this is done and what to look for in the client log
file to verify that the right method has been chosen.

Getting ready
Set up the client and server certificates using the first recipe from Chapter 2, Client-server
IP-only Networks. For this recipe, the server computer was running CentOS 6 Linux and
OpenVPN 2.3.11. The client computer was running Windows 7 SP1 and OpenVPN 2.3.11.
Keep the configuration file, basic-udp-server.conf, from the Server-side routing recipe
in Chapter 2, Client-server IP-only Networks at hand. For the client, keep the configuration
file, basic-udp-client.ovpn, from the Using an ifconfig-pool block recipe in Chapter
2, Client-server IP-only Networks at hand.

How to do it…
Start the server:1.

 [root@server]# openvpn --config basic-udp-server.conf

OS Integration

[309]

Add the following lines to the basic-udp-client.ovpn configuration file:2.

 verb 5
 route-method ipapi

Save this configuration file as example9-8.ovpn. Start the OpenVPN client with3.
this configuration.
After the connection has been established, bring up the Show Status window4.
again and look at the last lines of the connection log. The log will show lines
similar to the following:

 ... C:\WINDOWS\system32\route.exe ADD 10.198.0.0 MASK
 255.255.0.0 10.200.0.1
 ... Route addition via IPAPI succeeded
 ... Initialization Sequence Completed

Even though the route-method directive was set to ipapi, the log file prints
out the path of the Windows route.exe command. The second line shows
that the route was actually added using the IPAPI helper functions.

Now, modify the configuration file, example9-8.ovpn, to the following:5.

 verb 5
 route-method exe

Restart the OpenVPN client.6.
Look at the last lines of the connection log again. This time the message, Route7.
addition via IPAPI succeeded, will not be present in the log file, which means
that the route.exe command was used. Instead, you will see something similar
to this:

 ... C:\WINDOWS\system32\route.exe ADD 10.198.0.0 MASK
 255.255.0.0 10.200.0.1
 ... env_block: add PATH=C:\Windows\System32;C:\Windows;...
 ... Initialization Sequence Completed

The line starting with env_block indicates that a set of environment
variables were set up prior to launching the external route.exe command.

OS Integration

[310]

How it works…
The route-method directive has three options:

adaptive: First, try the IPAPI method, and fallback to the route.exe method if
IPAPI fails. This is the default.
ipapi: Always use the IPAPI helper functions to add routes.
exe: Always use the external program, route.exe.

Based on this directive, the OpenVPN client will choose how to add routes to the Windows
routing tables. Note that if OpenVPN cannot add a route, it will not abort the connection.
The current OpenVPN GUI does not detect this and will show a green icon in the taskbar,
suggesting a fully successful connection.

There's more…
OpenVPN is preconfigured to look for the route.exe program in the directory where
Windows is installed, usually C:\WINDOWS\system32. If Windows is installed in a
different directory, the win-sys directive can be used. The win-sys directive has two
options:

The default option, env, which means that the OpenVPN client will use the
contents of the environment variable, windir, to locate the Windows operating
system. This environment variable is always set in a normal Windows setup.
Starting with OpenVPN 2.3, this is the default setting and a warning message is
printed if win-sys env is specified.
The directory name where the Windows operating system can be found, for
example, D:\WINDOWS. This should be used only if the route.exe program is in
a non-standard location.

Windows 8+ – ensuring DNS lookups are
secure
Starting with Windows 8.1, Microsoft introduced a new feature for resolving hostnames to
IP addresses. Whenever an application wants to resolve a hostname, a DNS query is sent
out over all network adapters found in the system. The answer from the first adapter that
responds to the query is used.

OS Integration

[311]

If a user wants to tunnel all traffic over a VPN in a secure manner, then this feature is not
desirable. In a hostile network environment, a bogus IP address could be returned or even
the fact that a DNS lookup for a particular host is made could be considered dangerous.

Starting with OpenVPN 2.3.10, a new option, block-outside-dns, was added to suppress
this feature. In this recipe, we will show how to use this option.

Getting ready
Set up the client and server certificates using the first recipe from Chapter 2, Client-server
IP-only Networks. For this recipe, the server computer was running CentOS 6 Linux and
OpenVPN 2.3.11. The client computer was running Windows 8.1 and OpenVPN 2.3.11.
Keep the configuration file, basic-udp-server.conf, from the Server-side routing recipe
in Chapter 2, Client-server IP-only Networks at hand. For the client, keep the configuration
file, basic-udp-client.ovpn, from the Using an ifconfig-pool block recipe in Chapter
2, Client-server IP-only Networks at hand.

How to do it…
Start the server:1.

 [root@server]# openvpn --config basic-udp-server.conf

Add the following lines to the basic-udp-client.ovpn configuration file:2.

 verb 5
 block-outside-dns

Save this configuration file as example9-9.ovpn. Start the OpenVPN client with3.
this configuration.
After the connection has been established, bring up the Show Status window4.
again and look at the last lines of the connection log. The output should be
similar to the following:

OS Integration

[312]

In this log file, the Windows Filtering Platform (WFP) is initialized and
special rules are added to block DNS traffic.

Stop the OpenVPN client and check the log file again. You should see a line5.
indicating that the WFP engine is shut down, thereby removing the filtering rules
added by OpenVPN:

 ... Closing TUN/TAP interface
 ... Uninitializing WFP

How it works…
With the block-outside-dns directive, a set of Windows filtering rules are created after
the VPN connection has been established. These filter (or firewalling) rules prevent DNS
lookups from being sent over all network adapters found on the Windows client, except for
queries made over the TAP adapter. When the OpenVPN connection is terminated, the
WFP rules are removed.

There's more…
Be careful when using this option with OpenVPN 2.3 when you have multiple simultaneous
tunnels open. In some cases, the WFP rules that are added by the first tunnel are not
restored properly when the second tunnel is shut down, thereby blocking all DNS traffic.

OS Integration

[313]

Android – using the OpenVPN for Android
clients
OpenVPN can also be used on mobile devices, such as Android or iPhone smartphones. In
this recipe, we will show how to set up a basic configuration file for the OpenVPN for the
Android app. The same configuration can be used on iPhones and iPads.

Getting ready
Set up the client and server certificates using the first recipe from Chapter 2, Client-server
IP-only Networks. For this recipe, the server computer was running CentOS 6 Linux and
OpenVPN 2.3.11. The client device was running Android 4.2 and OpenVPN for Android
version 0.6.57. Keep the configuration file, basic-udp-server.conf, from the Server-side
routing recipe in Chapter 2, Client-server IP-only Networks at hand. For the client, keep the
configuration file, basic-udp-client.ovpn, from the Using an ifconfig-pool block recipe
in Chapter 2, Client-server IP-only Networks at hand.

How to do it…
Start the server:1.

 [root@server]# openvpn --config basic-udp-server.conf

Create the OpenVPN app profile by converting the basic-udp-client.ovpn2.
file to an inline configuration file. This is done by replacing all references to
external files with the inline blobs. We then add these inline blobs by copying the
contents from the external files. The resulting configuration file will look similar
to this:

 client
 proto udp
 remote openvpnserver.example.com
 port 1194
 dev tun
 nobind
 remote-cert-tls server
 key-direction 1
 push-peer-info

 <ca>

OS Integration

[314]

 -----BEGIN CERTIFICATE-----
 MIIGDzCCA/egAwIBAgIJAJOj7Wg...
 ...
 -----END CERTIFICATE-----
 </ca>

 <cert>
 -----BEGIN CERTIFICATE-----
 MIIFKzCCAxOgAwIBAgIBAjANBgi...
 ...
 -----END CERTIFICATE-----
 </cert>

 <key>
 -----BEGIN RSA PRIVATE KEY-----
 MIIEvgIBADANBgkqhkiG9w0BAQEF...
 ...
 -----END RSA PRIVATE KEY-----
 </key>

 <tls-auth>
 -----BEGIN OpenVPN Static key V1-----
 5f5b2bfff373961654089871b40a39eb
 ...
 -----END OpenVPN Static key V1-----
 </tls-auth>

Save this configuration file as example9-10.ovpn.3.
Transfer the app configuration file to the Android smartphone.4.
Start the OpenVPN for Android app and import the example9-10.ovpn profile.5.
If all goes well, you should see an output similar to this:

OS Integration

[315]

Launch the OpenVPN profile. After the connection has been established, the app6.
will show the current status and log with the top line showing Connected:
SUCCESS, 10.200.0.2, 192.168.96.101, 1194:

How it works…
The OpenVPN for Android app is based on the same source code as the open source
OpenVPN software. Hence, almost all options that can be specified in a normal
configuration file can also be specified in an OpenVPN app profile. However, it is
recommended to include all certificate and keying information inside the profile, as it
makes it much easier to transfer the configuration to the device.

OS Integration

[316]

There's more…
If you want to transfer the app profile by uploading it to a web server first, then make sure
that the file type and extensions remain intact. The mobile device will treat the
configuration file as a plain text file if it does not recognize it as an OpenVPN profile and
you will not be able to import it into the OpenVPN for Android app. In such cases, it may
be desirable to transfer the .ovpn file inside a ZIP (.zip) file.

See also
The Inline certificates recipe in the next chapter, which goes into detail on using
inline certificates

Push-peer-info – pushing options to Android
clients
This recipe is a continuation of the previous recipe. When integrating mobile clients into an
existing OpenVPN setup, it is often necessary to treat these mobile clients differently from
the regular OpenVPN clients. In some cases, it will be necessary to redirect all traffic for
mobile clients over the VPN tunnel or a different encryption scheme needs to be used to
optimize the OpenVPN app on the Android device. In this recipe, we will demonstrate how
to push an option to an Android client, while leaving the options for all other clients
unchanged.

Getting ready
Set up the client and server certificates using the first recipe from Chapter 2, Client-server
IP-only Networks. For this recipe, the server computer was running CentOS 6 Linux and
OpenVPN 2.4. The client device was running Android 4.2 and OpenVPN for Android
version 0.6.57. Keep the configuration file, basic-udp-server.conf, from the Server-side
routing recipe in Chapter 2, Client-server IP-only Networks at hand. For the client, keep the
configuration file, example9-10.ovpn, from previous recipe at hand.

OS Integration

[317]

How to do it…
Append the following lines to the basic-udp-server.conf server1.
configuration file:

 script-security 2
 client-connect /etc/openvpn/cookbook/example9-11.sh

Save it as example9-11-server.conf. Next, create the connect script:2.

 #!/bin/bash

 # Redirect the default gateway for all Android clients
 if ["x_${IV_PLAT}" = "x_android"]
 then
 echo "push "redirect-gateway def1"" >> $1
 fi

Save this file as example9-11.sh. Make sure that the script is executable and3.
start the server:

 [root@server]# chmod 755 example9-11.sh
 [root@server]# openvpn --config example9-11-server.conf

Start the OpenVPN for Android app and establish the VPN connection.4.
After the connection has been established, use another app, such as Fing, to5.
ensure that all traffic is redirected via the OpenVPN tunnel:

The first address in the traceroute output is 10.200.0.1, demonstrating that the6.
traffic is redirected via the OpenVPN server.

OS Integration

[318]

How it works…
In the OpenVPN for Android configuration, we added the push-peer-info option. This
causes the OpenVPN client to send configuration details to the server. Starting with
OpenVPN 2.4, these configuration details are available both inside plugins and scripts.
The client-connect script examines the environment variable, IV_PLAT, and pushes
a redirect-gateway if an Android client is connecting.

There's more…
The push-peer-info option is available in all OpenVPN 2.3 clients. However, support on
the server side to actually process this information was added in version 2.4. The following
peer information is sent to the server:

IV_COMP_STUB=1, IV_COMP_STUBv2=1: This indicates that the client supports
compression stubs. It also means that the server can push compression options to
the client.
IV_GUI_VER=de.blinkt.openvpn_0.6.57: This indicates the client GUI
version. In this case, the OpenVPN for Android client version 0.6.57 was used.
IV_HWADDR=00:00:00:00:00:00: This indicates the client's Ethernet hardware
address. On Android clients, this option is always 00:00:00, but on other
platforms the MAC address of the TUN/TAP adapter is transmitted.
IV_LZ4=1, IV_LZ4v2=1, IV_LZO=1: This indicates that the client supports
LZ4, LZ4v2, and LZO compression.
IV_NCP=2: This indicates that the client supports encryption cipher negotiation.
This allows the client and server to negotiate the most optimal compression and
HMAC algorithms.
IV_PLAT=android: This indicates the client platform.
IV_PROTO=2: This indicates the version of the push-peer-info format. In the
future, the format or set of variables sent to the server might change, which
would warrant an increase in the version number.
IV_RGI6=1: This indicates that the client supports redirection of the IPv6
gateway address.
IV_SSL=OpenSSL_1.0.2h__3_May_2016: This indicates the SSL library and
version that is used by the OpenVPN client. This could be important to determine
whether a particular client is susceptible to a crypto library vulnerability.
IV_VER=2.4_master: This indicates the version of the OpenVPN software on
the client.

10
Advanced Configuration

 In this chapter, we will cover:

Including configuration files in config files
Multiple remotes and remote-random
Inline certificates
Connection blocks
Details of ifconfig-pool-persist
Connecting using a SOCKS proxy
Connecting via an HTTP proxy
Connecting via an HTTP proxy with authentication
IP-less setups – ifconfig-noexec
Port sharing with an HTTPS server
Routing features – redirect-private, allow-pull-fqdn
Filtering out pushed options
Handing out public IP addresses

Introduction
The recipes in this last chapter will cover the advanced configuration of OpenVPN. This
chapter will focus on some of the less well-known configuration options that OpenVPN
offers, as well as some advanced recipes for real-life deployments. The recipes will cover
both advanced server configuration, such as the use of connection blocks and inline
certificates, as well as advanced client configuration, such as using a proxy server to connect
to an OpenVPN server.

Advanced Configuration

[320]

Including configuration files in config files
One of the lesser-known possibilities when using configuration files is the ability to include
other configuration files. This can be especially handy when setting up a complex
OpenVPN server, where multiple OpenVPN instances are offered simultaneously. The
common configuration directives can be stored in a single file, whereas the connection-
specific parts can be stored in a file for each instance. In this recipe, we will set up two
OpenVPN instances, one using UDP and the other using TCP as the transport protocol.

Note that this option does not allow for the sharing of VPN IP address ranges between
instances.

Getting ready
Set up the client and server certificates using the first recipe from Chapter 2, Client-server
IP-only Networks. For this recipe, the server computer was running CentOS 6 Linux and
OpenVPN 2.3.11.

How to do it…
First, create the common configuration file:1.

 dev tun

 ca /etc/openvpn/cookbook/ca.crt
 cert /etc/openvpn/cookbook/server.crt
 key /etc/openvpn/cookbook/server.key
 dh /etc/openvpn/cookbook/dh2048.pem
 tls-auth /etc/openvpn/cookbook/ta.key 0

 persist-key
 persist-tun
 keepalive 10 60

 push "route 10.198.0.0 255.255.0.0"
 topology subnet

 user nobody
 group nobody

 daemon

Advanced Configuration

[321]

Save it as example10-1-common.conf. Note that this configuration file does
not include a protocol specification or server line. Also, note that we will be
using the same server certificate for both OpenVPN instances.

Next, create the following server configuration file for UDP-based connections:2.

 config example10-1-common.conf

 proto udp
 port 1194
 server 10.200.0.0 255.255.255.0

 log-append /var/log/openvpn-udp.log

Save it as example10-1-server1.conf.

And createa server configuration file for TCP-based connections:3.

 config example10-1-common.conf

 proto tcp
 port 443
 server 10.201.0.0 255.255.255.0

 log-append /var/log/openvpn-tcp.log

Save it as example10-1-server2.conf. This instance is listening on the
HTTPS port443, which is an often-used trick to circumvent very strict
firewalls, or to work around a badly configured firewall.

Start both servers:4.

 [root@server]# openvpn --config example10-1-server1.conf
 [root@server]# openvpn --config example10-1-server2.conf

Check the log files to see if both the servers have successfully started.

Advanced Configuration

[322]

How it works…
OpenVPN configuration files are treated very similarly to command line options. As the --
config command line option is used almost always, it is also possible to use it inside a
configuration file again. This allows for a split in the configuration options, where directives
that are common to all OpenVPN instances can be stored in a single file for easy
maintenance. The instance-specific directives (such as the server directive) can then be
stored in much smaller configuration files, which are also less likely to change over time.
This again eases maintenance of a large-scale OpenVPN server setup.

OpenVPN has a built-in protection mechanism to avoid including the same configuration
file recursively.

Multiple remotes and remote-random
OpenVPN has (limited) built-in support for automatic failover and load-balancing: if the
connection to one OpenVPN server cannot be established, then the next configured server is
chosen. The remote-random directive can be used to load-balance many OpenVPN clients
across multiple OpenVPN servers. In this recipe, we will set up two OpenVPN servers and
then use the remote-random directive to have a client choose either one of the two servers.

Note that OpenVPN does not offer transparent failover, in which case the existing
connections are transparently migrated to another server. Transparent failover is much
harder to achieve with a VPN setup (not just OpenVPN), as the secure session keys need to
be migrated from one server to the other as well. This is currently not possible with
OpenVPN.

Getting ready
We will use the following network layout:

Advanced Configuration

[323]

Set up the client and server certificates using the first recipe from Chapter 2, Client-server
IP-only Networks. For this recipe, the server computer was running CentOS 6 Linux and
OpenVPN 2.3.11. The client was running Fedora 22 Linux and OpenVPN 2.3.11. Keep the
configuration file, basic-udp-server.conf, from the Server-side routing recipe
from Chapter 2, Client-server IP-only Networks, as well as the client configuration
file, basic-udp-client.conf at hand.

How to do it…
Start both servers:1.

 [root@server1]# openvpn --config basic-udp-server.conf
 [root@server2]# openvpn --config basic-udp-server.conf

Check the log files to see that both the servers have successfully started.

Note that we can use the exact same configuration file on both servers. By
using masquerading, the VPN clients will appear to come from either
server1 or server2.

Set up masquerading on both servers:2.

 [root@server1]# iptables -t nat -I POSTROUTING -o eth0 \
 -j MASQUERADE
 [root@server2]# iptables -t nat -I POSTROUTING -o eth0 \
 -j MASQUERADE

Advanced Configuration

[324]

Create the client configuration file:3.

 client
 proto udp
 remote openvpnserver1.example.com 1194
 remote openvpnserver2.example.com 1194
 remote-random
 dev tun
 nobind

 remote-cert-tls server
 tls-auth /etc/openvpn/cookbook/ta.key 1
 ca /etc/openvpn/cookbook/ca.crt
 cert /etc/openvpn/cookbook/client1.crt
 key /etc/openvpn/cookbook/client1.key

Save it as example10-2-client.conf.4.
Start the client:5.

 [root@client]# openvpn --config example10-2-client.conf

The OpenVPN client will randomly choose which server to connect to.

After the connection has been established, stop the first OpenVPN process on the server
that the client connected to:

 [root@server1]# killall openvpn

And wait for the client to reconnect. After the default timeout period, the client will
reconnect to an alternate server.

How it works…
When the OpenVPN client starts up and remote-random is specified, it randomly picks a
server from the list of available remote servers. If the VPN connection to this server cannot
be established, it will pick the next server from the list, and so on. When the VPN
connection is dropped, for example, due to a failing server, the OpenVPN client will try to
reconnect after a default timeout period. In the server configuration file used in the Server-
side routing recipe from Chapter 2, Client-server IP-only Networks, the timeout period is
configured using the keepalive option.

Advanced Configuration

[325]

There's more…
When setting up a failover OpenVPN solution there are many things to consider, some of
which are outlined here.

Mixing TCP and UDP-based setups
It is also possible to mix TCP and UDP-based setups by specifying the protocol type with
the remote directive:

remote openvpnserver1.example.com 1194 udp
remote openvpnserver2.example.com 1194 tcp

It is much handier to use connection blocks in this case. The use of connection blocks is
explained later in this chapter.

Advantage of using TCP-based connections
There is one major advantage when using a TCP-based setup in combination with a failover
solution. If the OpenVPN server to which a client is connected is unavailable, the TCP
connection will fail almost immediately. This leads to a very short timeout period after
which the OpenVPN client will try to reconnect. With a UDP-based setup, the client cannot
so easily detect whether the server is unavailable and must first wait for the keepalive
timeout to pass.

Automatically reverting to the first OpenVPN server
A question that is asked from time to time is whether it is possible to configure OpenVPN to
also support automatic reverting: a second OpenVPN instance is set up to provide a failover
solution. When the main OpenVPN server is unavailable, the backup instance takes over.
However, when the main OpenVPN server comes back online, the clients are not
automatically reconnected to the main server. For this, a client reset (or server reset of the
second OpenVPN instance) is required. It is possible to achieve this using scripting but it
depends largely on what type of connectivity is considered acceptable: it takes some time
for an OpenVPN client to detect when the remote server is not responding and to reconnect.
The VPN connectivity will be intermittent in such a setup. Especially when the network
connection to the main OpenVPN server is not stable, this can lead to very low availability.

A quick and dirty method to have all clients revert back to the first server is to use the
management interface on the second server and disconnect all clients.

Advanced Configuration

[326]

See also
The Server-side routing recipe from Chapter 2, Client-server IP-only Networks,
which explains the basic setup of OpenVPN
The Connection blocks recipe, which shows an alternate and more flexible method
for supporting multiple servers in a single client configuration file

Inline certificates
To ease the deployment of OpenVPN configuration, and public and private key files, a new
feature is available to include all of them in a single file. This is done by integrating the
contents of the ca, cert, key, and optionally the tls-auth file into the client configuration
file itself. In this recipe, we will set up such a configuration file and use it to connect to our
standard OpenVPN server.

Getting ready
We will use the following network layout:

Set up the client and server certificates using the first recipe from Chapter 2, Client-server
IP-only Networks. For this recipe, the server computer was running CentOS 6 Linux and
OpenVPN 2.3.11. The client was running Fedora 22 Linux and OpenVPN 2.3.11. Keep the
configuration file, basic-udp-server.conf, from the Server-side routing recipe
from Chapter 2, Client-server IP-only Networks at hand, as well as the client configuration
file, basic-udp-client.conf.

Advanced Configuration

[327]

How to do it…
First, start the server:1.

 [root@server]# openvpn --config basic-udp-server.conf

Create the client configuration file:2.

 client
 proto udp
 remote openvpnserver.example.com
 port 1194
 dev tun
 nobind

 remote-cert-tls server
 key-direction 1

 <ca>
 -----BEGIN CERTIFICATE-----
 # insert base64 blob from ca.crt
 -----END CERTIFICATE-----
 </ca>

 <cert>
 -----BEGIN CERTIFICATE-----
 # insert base64 blob from client1.crt
 -----END CERTIFICATE-----
 </cert>

 <key>
 -----BEGIN PRIVATE KEY-----
 # insert base64 blob from client1.key
 -----END PRIVATE KEY-----
 </key>

 <tls-auth>
 -----BEGIN OpenVPN Static key V1-----
 # insert ta.key
 -----END OpenVPN Static key V1-----
 </tls-auth>

Insert the contents of the ca.crt, client1.crt, client1.key and ta.key
files in the configuration. Save it as example10-3-client.conf.

Advanced Configuration

[328]

Then, connect the client:3.

 [root@client]# openvpn --config example10-3-client.conf

How it works…
When OpenVPN parses the configuration file, it scans for the directives ca, cert, key,
and tls-auth, (and dh for server configuration files), but also for XML-like blobs starting
with <ca>, <cert>, <key>, <tls-auth> and <dh> respectively. If an XML-like block is
found, then the contents of this XML-like block are then read and treated in the same
manner as when a file is specified. When all the required configuration files or blocks are
present, the connection is established.

Note that it is not required to treat all of the aforementioned configuration directives in the
same manner. It is also possible to only specify an inline-block for the CA certificate and
tls-auth files, as these files tend to be static for all the clients.

There's more…
As stated in the first version of the OpenVPN 2 Cookbook, it was also possible to specify an
inline file using the [[inline]] tag. However, this tag was never properly documented
and starting with OpenVPN 2.3 it is no longer functional.

Connection blocks
Similar to the inline certificates used in the previous recipe, it is also possible to specify
connection blocks. These connection blocks are treated as multiple definitions for remote
servers and they are tried in order until a VPN connection is established. The advantage of
using a connection block is that for each remote server, server-specific parameters can be
specified, such as the protocol (UDP or TCP), the remote port, whether a proxy server
should be used, and so on.

In this recipe, we will set up two servers, one listening on a UDP port and the other on a
TCP port. We will then configure the OpenVPN client to try the first server using a UDP
connection. If the connection cannot be established, the client will attempt to connect to the
second server using a TCP connection.

Advanced Configuration

[329]

Getting ready
We will use the following network layout:

Set up the client and server certificates using the first recipe from Chapter 2, Client-server
IP-only Networks. For this recipe, the server computer was running CentOS 6 Linux and
OpenVPN 2.3.11. The client was running Fedora 22 Linux and OpenVPN 2.3.11. Keep the
configuration file, basic-udp-server.conf, from the Server-side routing recipe
from Chapter 2, Client-server IP-only Networks, as well as the server configuration
file, example8-9-server.conf, from the Tuning TCP-based connections recipe
from Chapter 8, Performance Tuning.

How to do it…
Start both the servers:1.

 [root@server1]# openvpn --config basic-udp-server.conf
 [root@server2]# openvpn --config example8-9-server.conf

Check the log files to check that both the servers have successfully started.2.
Create the client configuration file:3.

 client
 dev tun

 <connection>
 remote openvpnserver1.example.com
 proto udp
 port 1194
 </connection>

Advanced Configuration

[330]

 <connection>
 remote openvpnserver2.example.com
 proto tcp
 port 1194
 </connection>

 remote-cert-tls server
 ca /etc/openvpn/cookbook/ca.crt
 cert /etc/openvpn/cookbook/client1.crt
 key /etc/openvpn/cookbook/client1.key
 tls-auth /etc/openvpn/cookbook/ta.key 1

Save it as example10-4-client.conf.4.
Start the client:5.

 [root@client]# openvpn --config example10-4-client.conf

After the connection has been established, stop the first OpenVPN process on the6.
server that the client connected to:

 [root@server1]# killall openvpn

And wait for the client to reconnect. After the default timeout period, the
client will reconnect to the alternate server using the TCP protocol.

How it works…
When the OpenVPN client starts up, it attempts to connect to the server specified in the first
<connection> block. If that connection fails, it will try the next <connection> block entry
and so forth. When an OpenVPN server becomes unavailable or is stopped, the client will
automatically restart and try to connect to the first available OpenVPN server again.

The OpenVPN client first parses the global directives, which are specified outside the
<connection> blocks. For each block, the global directives are then overruled using block-
specific directives. This makes it easier to specify in the <connection> blocks only those
parameters that are different for each connection.

Advanced Configuration

[331]

There's more…
Connection blocks, as well as inline certificates, are very handy features to easily distribute
OpenVPN configurations using a single file. However, a consequence of these features is
that the use of the command line to overrule the directives specified in the configuration file
becomes harder, if not impossible. There are a few other things to keep in mind when using
connection blocks.

Allowed directives inside connection blocks
There are only a few directives allowed inside a connection block:

bind and bind-ipv6
connect-retry, connect-retry-max, and connect-timeout
explicit-exit-notify

float

http-proxy, http-proxy-option, http-proxy-retry, and http-proxy-
timeout

link-mtu and link-mtu-extra
local lport

mssfix

nobind

port

proto

remote and rport
socks-proxy and socks-proxy-retry
tun-mtu and tun-mtu-extra

All other directives are considered global and can only be specified once.

Pitfalls when mixing TCP and UDP-based setups
Connection blocks make it very easy to mix TCP and UDP-based setups. The downside is
that the global parameters specified in the configuration file must be valid for both the TCP
and UDP-based setups.

Advanced Configuration

[332]

See also
The Multiple remotes and remote-random recipe earlier in this chapter, which
explains how to achieve the same setup without using connection blocks

Details of ifconfig-pool-persist
One of the options available in OpenVPN that can lead to a lot of confusion is ifconfig-
pool-persist. This directive tells the OpenVPN server to maintain a persistent list of IP
addresses handed out to different clients. When a client reconnects at a later time, the
previously-used address is reused. This is only one of three methods for assigning static
addresses to an OpenVPN client. The other two methods are:

Using an ifconfig-push statement in a client-connect script
Using an ifconfig-push statement in a client-configuration file

Both of these take precedence over the entries found in the ifconfig-pool-persist file.
Experience has shown that it is often a good idea to temporarily disable this option when an
OpenVPN setup is not working properly.

In this recipe, we will demonstrate how to use ifconfig-pool-persist and what the
pitfalls are.

Getting ready
We will use the following network layout:

Advanced Configuration

[333]

Set up the client and server certificates using the first recipe from Chapter 2, Client-server
IP-only Networks. For this recipe, the server computer was running CentOS 6 Linux and
OpenVPN 2.3.11. The client was running Fedora 22 Linux and OpenVPN 2.3.11. Keep the
configuration file, basic-udp-server.conf, from the Server-side routing recipe
from Chapter 2, Client-server IP-only Networks at hand, as well as the client configuration
file, basic-udp-client.conf, from the same recipe. The second client was running
Windows 7 64 bit and OpenVPN 2.3.11. For this client, keep the client configuration
file, basic-udp-client.ovpn, from the Using an ifconfig-pool block recipe from Chapter
2, Client-server IP-only Networks at hand.

How to do it…
Create the server configuration file by adding the following line to the basic-1.
udp-server.conf file:

 ifconfig-pool-persist /etc/openvpn/cookbook/ipp.txt

Save it as example10-4-server.conf file.2.
Start the server:3.

 [root@server]# openvpn --config example10-4-server.conf

An empty file, /etc/openvpn/cookbook/ipp.txt, will be created as the
server starts up.

Connect the first client:4.

 [root@client]# openvpn --config basic-udp-client.conf

Normally, this client will be assigned 10.200.0.2, which is the first
available IP address in the server IP range.

Stop both the client and the server. List the contents of the ipp.txt file:5.

 [root@server]# cat /etc/openvpn/cookbook/ipp.txt
 client1,10.200.0.2

Advanced Configuration

[334]

Start the server again. Now, connect the second client, which has a different6.
certificate:

This client will now be assigned the address 10.200.0.3. Without
the ifconfig-pool-persist option, it would have been assigned the first
available address, which is 10.200.0.2.

How it works…
When the OpenVPN server starts, it reads the ipp.txt file, if it exists, and it tries to re-
assign the IP addresses to the client certificates found in the file. Whenever an OpenVPN
client with one of the existing client certificates connects, it is assigned the address found in
the ipp.txt file, unless the server VPN IP address space is too small for the number of
already-connected clients. In that case, the client receives the first available address from the
server VPN IP address space.

The first client that connected received the first available address, 10.200.0.2, from the
VPN IP server address range. When the OpenVPN server shuts down, this information is
recorded in the ipp.txt file. The second time the OpenVPN server started, this
information was reloaded and the address, 10.200.0.2, was held in reserve for the client
with certificate client1. When the second client connected with certificate client2, it
received the next available address in the server VPN IP address range, which
is 10.200.0.3. When the server shuts down again, this information is also recorded in
the ipp.txt file.

Advanced Configuration

[335]

This means that from now on, the first client will always receive the .2 address and the
second client the .3 address. However, it is not a guarantee that the listed IP addresses will
be assigned to a particular client certificate. The exception occurs when many VPN clients
connect to the server. If the VPN IP address range is exhausted and the first client is not
connected at that time, its address is recycled for other VPN clients. If the client with
certificate client1 then tries to connect to the server, it will be assigned the first available
address. For a guaranteed assignment, a client-config-dir file should be used.

There's more…
When using the ifconfig-pool-persist directive, there are a few pitfalls to watch out
for.

Specifying the update interval
Because we did not explicitly specify an update interval, the ipp.txt file is updated every
600 seconds (10 minutes). This can also be seen by looking at the ipp.txt file right after a
new client connects: the newly-found client certificate and VPN IP are not listed in
the ipp.txt file until the first update interval passes or when the OpenVPN server process
shuts down.

It is also possible to specify an update interval of 0 seconds, which means that the ipp.txt
file is never updated. This causes the OpenVPN server to associate IP addresses with the
client certificate names found in the ipp.txt file at the startup but these associations will
never change afterwards.

Caveat – the duplicate-cn option
The duplicate-cn option can be used to allow the same client certificate to connect to the
same server a number of times. If this option is used, the ifconfig-pool-persist option
becomes useless, as the same client certificate will be connected twice. This means that the
OpenVPN server has to hand out two different IP addresses to each client and the entry in
the ipp.txt file becomes meaningless.

Advanced Configuration

[336]

When topology net30 is used
When the server option topology net30 is used, the format of the ipp.txt file is slightly
different. In the net30 topology mode, each client is assigned a /30 network address
consisting of four IP addresses: the network address, the VPN server endpoint address, the
actual client VPN IP address, and the broadcast address for the /30 network. In
the ipp.txt file, the first of these is recorded:

client1,10.200.0.4
client2,10.200.0.8

Connecting using a SOCKS proxy
Under certain circumstances, it is not possible to directly connect to an OpenVPN server.
This happens most often when firewalls are restricting UDP-based traffic. In such cases,
OpenVPN can connect to an OpenVPN server via an intermediary host known as a proxy.
OpenVPN supports two types of proxies, SOCKS and HTTP-based, both of which work
only using TCP-based configurations. This recipe will outline how to access an OpenVPN
server via a SOCKS proxy, whereas the next two recipes will show how to use an HTTP
proxy, both with and without authentication.

SOCKS proxies can very easily be set up using almost any SSH client. On Linux and Mac
OS X, it can be done using the ssh or slogin commands, whereas, on Windows, the free
SSH client PuTTY can be used. In this recipe, we will use SSH on a Linux client to set up a
public SOCKS proxy. A Windows OpenVPN client will connect using this proxy.

Getting ready
We will use the following network layout:

Advanced Configuration

[337]

Set up the client and server certificates using the first recipe from Chapter 2, Client-server
IP-only Networks. For this recipe, the server computer was running CentOS 6 Linux and
OpenVPN 2.3.12. The client was running Windows 7 64 bit and OpenVPN 2.3.10. Keep the
configuration file, example8-9-server.conf, from the Tuning TCP-based connections
recipe from Chapter 8, Performance Tuning at hand. For the client, keep the configuration
file, basic-tcp-client.ovpn, from Using an ifconfig-pool block recipe from the Chapter
2, Client-server IP-only Networks at hand.

How to do it…
Start the server:1.

 [root@server]# openvpn --config example8-9-server.conf

Right-click on the OpenVPN GUI tray icon and select Settings. Fill in the name or2.
IP address of the SOCKS proxy host, and then click on OK:

Set up a SOCKS proxy by setting up an SSH connection on the intermediary3.
proxy host. The destination address for the SSH connection is a server which can
reach the OpenVPN server:

 [socks-proxy]$ ssh -g -D 1080 remote-host.example.com

Advanced Configuration

[338]

Now start the OpenVPN client in another terminal window:4.

The connection log will show that OpenVPN first connects to the remote proxy5.
host (in this screenshot, the IP address 192.168.3.17 was used). This
connection is then forwarded to the OpenVPN server and the VPN is established:

Advanced Configuration

[339]

How it works…
A SOCKS proxy host acts as an intermediary between the (OpenVPN) client and the server.
SOCKS proxies can also be configured in most web browsers and are often used to gain
access through a hotel or corporate firewall. The client first connects to the SOCKS proxy
host and then requests a new connection to the actual endpoint, which is the OpenVPN
server in this case. If the connection is allowed by the SOCKS host, the connection is
established and the VPN connection can be set up.

There's more…
Before using a proxy host to set up a VPN connection, there are a few things to consider:

Performance
Proxy hosts tend to have a severe impact on the performance of a VPN setup. Both the
bandwidth and the latency are usually affected when proxy hosts are used. This is mostly
caused by having to connect to a separate host. There is little that can be done about this
drop in performance.

SOCKS proxies via SSH
SSH can be a very handy tool to set up a SOCKS proxy host, over which an OpenVPN
connection can be set up. Apart from the drawback mentioned above, this introduces
another penalty: both the SSH connection and the VPN connection will normally be
encrypted. Thus, tunneling traffic over an encrypted VPN link, which in itself is tunneled
over an encrypted SSH link, is double encrypted!

A question that you should ask yourself if you are tunneling VPN traffic over an SSH
tunnel is: why? What type of traffic needs to be tunneled over a VPN link that cannot be
tunneled via a SOCKS-over-SSH tunnel? Most modern web browsers and e-mail clients
have built-in support for SOCKS hosts, eliminating the need for a full-blown VPN. File
sharing protocols such as Windows file sharing (Common Internet File System (CIFS)) can
also be tunneled over an SSH connection. In those cases, a VPN tunnel adds only extra
complexity.

Advanced Configuration

[340]

SOCKS proxies using plain-text authentication
In OpenVPN 2.2 and higher, support is added to connect to a SOCKS proxy that required
authentication. For OpenVPN 2.2, plain-text authentication support is added. Though the
name “plain text” may suggest otherwise, the authentication mechanism is secure, as the
connection to the SOCKS proxy host is encrypted first.

See also
The next two recipes in this chapter will deal with connecting an OpenVPN client
to a server via an HTTP proxy

Connecting via an HTTP proxy
As stated in the previous recipe, it is not possible to directly connect to an OpenVPN server
under certain circumstances. In such cases, OpenVPN can connect to an OpenVPN server
via an intermediary host known as a proxy. This recipe will outline how to access an
OpenVPN server via an roxy.

The HTTP proxy used in this recipe is a Linux-based Apache httpd server with
the mod_proxy module loaded. This module can be configured to allow CONNECT requests.
This type of request is needed to connect to secure web servers (HTTPS) as well as to an
OpenVPN server. If the CONNECT request is not allowed, then the HTTP proxy cannot be
used to set up an OpenVPN connection.

Getting ready
We will use the following network layout:

Advanced Configuration

[341]

Set up the client and server certificates using the first recipe from Chapter 2, Client-server
IP-only Networks. For this recipe, the server computer was running CentOS 6 Linux and
OpenVPN 2.3.12. The client was running Windows 7 64 bit and OpenVPN 2.3.11. Keep the
configuration file, example8-9-server.conf, from the Tuning TCP-based connections
recipe from Chapter 8, Performance Tuning, as well as the client configuration
file, example8-9.ovpn, from the same recipe.

How to do it…
Start the server:1.

 [root@server]# openvpn --config example8-9-server.conf

Modify the client configuration file, example8-9.ovpn, by adding the lines:2.

 http-proxy http-proxy-host 80
 verb 4

Here, http-proxy-host is either the name or the IP address of the host
running the HTTP proxy software. In this recipe, the HTTP proxy was
running on the HTTP default port 80. Save the configuration file
as example10-6.ovpn.

Advanced Configuration

[342]

Start the client, and then check the connection log.3.

The connection log will show that the OpenVPN client first connects to the
HTTP proxy host and then sends an HTTP 'CONNECT' request to connect to
the OpenVPN server:

The HTTP proxy host responds with the HTTP code 200 meaning OK, after
which the VPN connection is established.

How it works…
An HTTP proxy host acts as an intermediary between the (OpenVPN) client and the server.
HTTP proxies can be configured in most web browsers and are often used to gain access
through a hotel or a corporate firewall. The client first connects to the HTTP proxy host and
then requests a new connection to the actual endpoint using the HTTP 'CONNECT' request.
If the HTTP proxy host allows the CONNECT request, the HTTP code 200 is returned and the
connection to the OpenVPN server is granted. From here on, the OpenVPN connection is
set up in a similar fashion to a regular TCP-based setup.

Advanced Configuration

[343]

There's more…
When using an HTTP proxy host to connect to an OpenVPN server, there are a few caveats.

http-proxy options
There are a few options available in OpenVPN to configure the way in which OpenVPN
connects with the HTTP proxy host:

http-proxy-timeout (n): This sets the timeout when connecting to the HTTP
proxy host to (n) seconds. The default value is 5 seconds.
http-proxy-option AGENT (string): This sets the HTTP agent to (string)
when connecting to the HTTP proxy host. Some proxies allow connections from
“well-known” web browsers only.
http-proxy-option VERSION 1.1: This sets the HTTP protocol version to 1.1.
The default is HTTP/1.0. OpenVPN 2.1 is not fully HTTP/1.1 compliant when
connecting to an HTTP proxy host, causing some proxies to refuse access. This is
fixed in OpenVPN 2.2.

Dodging firewalls
Please note that OpenVPN makes no attempt to hide itself from a firewall. Modern firewalls
that perform the so-called deep-packet inspection can easily detect the type of traffic that
OpenVPN is using to connect to the OpenVPN server and can block access based on that.

Performance
Similar to SOCKS proxies, HTTP proxy hosts tend to have an impact on the performance of
a VPN setup. Both the bandwidth and the latency are usually affected when proxy hosts are
used. This is mostly caused by having to connect to a separate host.

Advanced Configuration

[344]

Using the OpenVPN GUI
In Windows, you can also the use OpenVPN GUI application to set up an HTTP proxy
server:

See also
The previous and next recipes in this chapter deal with connecting via a SOCKS
proxy host and connecting via an HTTP proxy with authentication

Connecting via an HTTP proxy with
authentication
In the previous recipe, a plain HTTP proxy was used to connect to an OpenVPN server. As
a follow-up, in this recipe we will show how an OpenVPN connection can be set up when
the HTTP proxy server requires authentication.

The HTTP proxy used in this recipe is a Linux-based Apache httpd server with
the mod_proxy module loaded and configured for basic authentication.

Advanced Configuration

[345]

Getting ready
We will use the following network layout:

Set up the client and server certificates using the first recipe from Chapter 2, Client-server
IP-only Networks. For this recipe, the server computer was running CentOS 6 Linux and
OpenVPN 2.3.12. The client was running Fedora 22 Linux and OpenVPN 2.3.11. Keep the
configuration file, example8-9-server.conf, from the Tuning TCP-based connections
recipe from Chapter 8, Performance Tuning, as well as the client configuration file, basic-
tcp-client.conf, from the Server-side routing recipe from Chapter 2, Client-server IP-only
Networks at hand.

How to do it…
Start the server:1.

 [root@server]# openvpn --config example8-9-server.conf

Set up the HTTP proxy server to support basic authentication. For the2.
Apache httpd server used in this recipe, the following proxy.conf file was
used:

 LoadModule proxy_module modules/mod_proxy.so
 LoadModule proxy_balancer_module modules/mod_proxy_balancer.so
 LoadModule proxy_ftp_module modules/mod_proxy_ftp.so
 LoadModule proxy_http_module modules/mod_proxy_http.so
 LoadModule proxy_connect_module modules/mod_proxy_connect.so

 ProxyRequests On

Advanced Configuration

[346]

 ProxyVia On
 AllowCONNECT 1194
 KeepAlive on

 <Proxy *>
 Order deny,allow
 Deny from all
 Require user cookbook
 AuthType Basic
 AuthName "Password Required"
 AuthUserFile /etc/httpd/conf/proxy-password
 </Proxy>

Create the proxy-password file using Apache's htpasswd command:3.

 [root@proxyhost]# cd /etc/httpd/conf
 [root@proxyhost]# htpasswd -c proxy-password cookbook

Add the following lines to the client configuration file, basic-tcp-4.
client.conf:

 verb 5
 http-proxy proxy.example.com 80 /etc/openvpn/cookbook/proxypass

Save the configuration file as example10-7-client.conf.5.
Create a plain-text file containing the username and password created in step 3;6.
for example, by using:

 [client]# echo -e "cookbook\ncookbook" > proxy-password

Start the client and wait for the connection to be established:7.

 [client]# openvpn --config example10-7-client.conf

Next, we take a closer look at the client logfile. If the right username and8.
password are entered, the HTTP proxy grants access to connect to the OpenVPN
server and the VPN connection is established:

 Attempting to establish TCP connection with
 [AF_INET]proxy.example.com:80 [nonblock]
 TCP connection established with [AF_INET]proxy.example.com:80
 Send to HTTP proxy: 'CONNECT openvpnserver.example.com:1194
 HTTP/1.0'
 Attempting Basic Proxy-Authorization
 HTTP proxy returned: 'HTTP/1.0 200 Connection Established'
 TCPv4_CLIENT link local: [undef]

Advanced Configuration

[347]

 TCPv4_CLIENT link remote: [AF_INET]proxy.example.com:80
 TLS: Initial packet from [AF_INET]proxy.example.com:80,
 sid=3593eadc c87fb5d4
 VERIFY OK: depth=1, C=US, O=Cookbook 2.4, CN=Cookbook 2.4 CA,
 emailAddress=openvpn@example.com
 Validating certificate key usage
 ++ Certificate has key usage 00a0, expects 00a0
 VERIFY KU OK
 Validating certificate extended key usage
 ++ Certificate has EKU (str) TLS Web Server Authentication,
 expects TLS Web Server Authentication
 VERIFY EKU OK
 VERIFY OK: depth=0, C=US, O=Cookbook 2.4, CN=openvpnserver
 Data Channel Encrypt: Cipher 'BF-CBC' initialized with 128 bit
 key

As can be seen from the connection log, the OpenVPN client attempts basic
proxy authorization when connecting to the HTTP proxy server. If the
authentication is successful, the HTTP proxy grants access to the client to
connect to the server.

How it works…
Similar to the previous recipe, the OpenVPN client first connects to the HTTP proxy host. It
attempts to authenticate to the HTTP proxy using basic authentication, using the username
and password supplied in the proxy password file, /etc/openvpn/cookbook/proxypass.
After successful authentication, the client then sends an HTTP 'CONNECT' request to
connect to the OpenVPN server. From here on, the OpenVPN connection is set up in a
similar fashion to a regular TCP-based setup.

There's more…
OpenVPN supports multiple authentication mechanisms when connecting to an HTTP
proxy.

Advanced Configuration

[348]

NTLM proxy authorization
OpenVPN also supports HTTP proxies that use NTLM proxy authorization, where NTLM
stands for NT Lan Manager. Typically, this type of proxy is used in a Microsoft Windows
environment. Unfortunately, OpenVPN's implementation of NTLM authorization is rather
limited. It does not send out proper NTLMSSP messages and it works only with a very
limited set of proxies. To enable support for this type of proxy add http-proxy
proxyhost proxyport stdin ntlm or http-proxy proxyhost proxyport stdin
ntlm2, where stdin instructs OpenVPN to query the username and password on the
command prompt.

Authentication methods
OpenVPN also supports HTTP digest authentication, which is more secure than the plain-
text authentication outlined in this recipe. You can also use the option auto-nct with
the http-proxy authentication directive to reject weak proxy authentication methods.

OpenVPN GUI limitations
The current OpenVPN GUI does not allow you to specify a username or password in the
GUI. This was supported in older versions of the Windows OpenVPN GUI application. As
this feature is not widely used it was removed during the rewrite of the GUI.

See also
The previous recipe in this chapter, where a connection is established using an
HTTP proxy without extra authentication

IP-less setups – ifconfig-noexec
The goal of this recipe is to create an OpenVPN tunnel without assigning IP addresses to
the endpoints of the tunnel. In a routed network setup, this ensures that the tunnel
endpoints can never be reached through themselves, which adds some security and can also
make the routing tables a bit shorter. In the OpenVPN configuration files, an IP address
needs to be specified, but it is never assigned to the tunnel interface.

Advanced Configuration

[349]

This recipe has only been tested on Linux systems, as it requires some network-interface
configuration that is not available on other platforms.

Getting ready
We will use the following network layout:

Make sure that the client and server are not on the same local network. If the client and
server can contact each other directly then this recipe will fail. Set up the client and server
certificates using the first recipe from Chapter 2, Client-server IP-only Networks. In this
recipe, the server computer was running CentOS 6 Linux and OpenVPN 2.3.12. The client
was running Fedora 22 Linux and OpenVPN 2.3.11. Keep the server config
file, example3-1-server.conf, from the Simple configuration – non-bridged recipe
from Chapter 3, Client-server Ethernet-style Networks.

How to do it…
Create the server configuration file by adding a line to the example3-1-1.
server.conf file:

 route 192.168.4.0 255.255.255.0 192.168.99.1

Save it as example10-8-server.conf.2.
Start the server:3.

 [root@server]# openvpn --config example10-8-server.conf

Advanced Configuration

[350]

Create the client configuration file:4.

 client
 proto udp
 remote openvpnserver.example.com
 port 1194

 dev tap
 nobind

 remote-cert-tls server
 tls-auth /etc/openvpn/cookbook/ta.key 1
 ca /etc/openvpn/cookbook/ca.crt
 cert /etc/openvpn/cookbook/client1.crt
 key /etc/openvpn/cookbook/client1.key

 script-security 2
 ifconfig-noexec
 up /etc/openvpn/cookbook/example10-8-up.sh

 route-noexec
 route-up /etc/openvpn/cookbook/example10-8-route-up.sh

Save it as example-10-8-client.conf.5.
Next, create the example10-8-up.sh script:6.

 #!/bin/bash

 /sbin/ifconfig $1 0.0.0.0 up
 # needed for TAP interfaces !!!
 echo 1 > /proc/sys/net/ipv4/conf/$1/proxy_arp

Save it as /etc/openvpn/cookbook/example10-8-up.sh.7.
Similarly, create the example10-8-route-up.sh script:8.

 #!/bin/bash

 # add an explicit route back to the VPN endpoint
 /sbin/ip route add $route_vpn_gateway/32 dev $dev

 n=1;
 while [$n -le 100]
 do
 network=`env | sed -n \
 "/^"route_network_${n}=/s/^route_network_${n}=//p"`"
 netmask=`env | sed -n \
 "/^"route_netmask_${n}=/s/^route_netmask_${n}=//p"`"

Advanced Configuration

[351]

 if [-z "$"network" -o -z "$"netmask"]
 then
 break
 fi

 /sbin/ip route add $network/$netmask dev $dev
 let n=n+1
 done

Save it as /etc/openvpn/cookbook/example10-8-route-up.sh.9.
Make sure both scripts are executable and both of them start the client:10.

 [[root@client]# chmod 755 /etc/openvpn/cookbook/example10-8*.sh
 [root@client]# openvpn --config example10-8-client.conf

After the client successfully connects to the OpenVPN server, check the tap011.
interface and the routing tables, and verify that you can ping the server:

 [root@client]# ip addr show tap0
 13: tap0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc
 pfifo_fast state UNKNOWN group default qlen 100
 link/ether b6:b3:0e:41:d5:4d brd ff:ff:ff:ff:ff:ff
 inet6 fe80::b4b3:eff:fe41:d54d/64 scope link
 valid_lft forever preferred_lft forever
 [root@client]# netstat-rn
 Kernel IP routing table
 Destination Gateway Genmask Flags[...] Iface
 192.168.4.0 0.0.0.0 255.255.255.0 U 0 0 0 eth0
 10.198.0.0 0.0.0.0 255.255.0.0 U 0 0 0 tap0
 [...]
 [root@client]# ping -c 2 192.168.99.1
 PING 192.168.99.1 (192.168.99.1) 56(84) bytes of data.
 64 bytes from 192.168.99.1: icmp_seq=1 ttl=64 time=25.7 ms
 64 bytes from 192.168.99.1: icmp_seq=2 ttl=64 time=26.2 ms

How it works…
The OpenVPN server allocates an IP address for the client, but that does not mean that the
client interface actually needs to assign these addresses. The example10-8-up.sh script
does exactly this.

Advanced Configuration

[352]

Some older Linux kernels refuse to add a route without an address being assigned to an
interface. Hence, we assign the address 0.0.0.0 to the tun0 interface. To add the routes
that are pushed by the server, a special route-up script is used, example10-8-route-
up.sh, which brings up all the routes.

There's more…
Please note the following when considering an IP-less setup.

Point-to-point and TUN-style networks
This recipe can also be used in a point-to-point style environment, where static keys are
used to connect two networks. Similarly, it can also be used in a TUN-style setup.

Routing and firewalling
At first, this recipe might seem odd. The advantage of this setup is that the OpenVPN client
itself is not reachable by other machines on the VPN. This is handy when connecting many
clients to an OpenVPN server, but some clients are used as gateways to the networks
behind them (for example, to connect a remote office to the OpenVPN server). By not
assigning the remote office gateway an IP address, there is no risk of the gateway itself
being attacked from the remote VPN side. Also, server-side firewalling and iptables rules
can be slightly shorter in this scenario, as there will be no traffic coming from the OpenVPN
client with the VPN source address. This is also the reason why the server configuration has
an explicit route to the client-side network:

route 192.168.4.0 255.255.255.0 192.168.99.1

It also explains why this recipe will fail if the VPN client and server are on the same local
area network. If the VPN client can contact the VPN server directly then the VPN server
will not be able to determine which traffic needs to go inside the tunnel and which traffic
needs to be sent directly to the client.

Advanced Configuration

[353]

Port sharing with an HTTPS server
A common OpenVPN setup to allow road warriors to reach the home office is to have
OpenVPN listen on the secure web server (HTTPS) port 443. The downside is that you can
no longer use that port on the OpenVPN server to actually host a secure website. OpenVPN
2.1 introduces a new port-sharing directive, enabling dual use of a TCP port. All traffic
that is detected as OpenVPN traffic is processed by the OpenVPN server itself, and all other
traffic is forwarded to another (local) machine and/or port.

In this recipe, we will set up an OpenVPN server to share TCP port 443 with a web server
and we will show that both OpenVPN and a web browser can successfully connect to this
server.

Getting ready
We will use the following network layout:

Set up the client and server certificates using the first recipe from Chapter 2, Client-server
IP-only Networks. For this recipe, the server computer was running CentOS 6 Linux and
OpenVPN 2.3.12. The client was running Windows 7 64 bit and OpenVPN 2.3.10. Keep the
server configuration file, example8-9-server.conf, from the Tuning TCP-based
connections recipe from Chapter 8, Performance Tuning at hand, as well as the client
configuration file, example8-9.ovpn, from the same recipe.

On the server computer, a secure web server was running on port 8443.

Advanced Configuration

[354]

How to do it…
Create the server configuration file by modifying the example8-9-server.conf1.
file. Change the following line:

 port 1194

Change it to the following:

 port 443
 port-share localhost 8443

Save it as example10-9-server.conf.

Start the server:2.

 [root@server]# openvpn --config example10-9-server.conf

Next, modify the client configuration file, example8-9.ovpn, by also changing3.
the port to 443. Save the client configuration file as example10-9.ovpn.
Start the client and verify that the client can connect to the VPN server.4.
After the client has connected, start a web browser and browse to:5.

 https://openvpnserver.example.com

The OpenVPN server log file will show lines similar to the following:

 ... Re-using SSL/TLS context
 ... TCP connection established with <client-ip>:53356
 ... TCPv4_SERVER link local: [undef]
 ... TCPv4_SERVER link remote: <client-ip>:53356
 ... <client-ip>:53356 Non-OpenVPN client protocol detected

How it works…
When port-share is used, OpenVPN will inspect the incoming traffic on port 443. If this
traffic is a part of an OpenVPN session or if it is an initial OpenVPN handshake, then the
OpenVPN server processes it by itself. If it is not recognizable as OpenVPN traffic, it is
forwarded out to the host and port specified in the port-share directive.

Hence, it is the OpenVPN server process that is always listening on port 443. The web
server must be listening on a different host, interface, or port. With this setup, the same port
can be used to offer two different services.

Advanced Configuration

[355]

There's more…
The web server that OpenVPN forwards its traffic to must be a secure (HTTPS) web server.
This is due to the nature of the inbound SSL traffic on the OpenVPN server itself. It is not
possible to forward the traffic to a regular (HTTP) web server. If the traffic is forwarded to
port 80, the Apache web server used in this recipe, the following error will appear in the
web server error log file:

[error] [client 127.0.0.1] Invalid method in request \x16\x03\x01

Alternatives
There are many alternatives available that can achieve the same functionality. One example
tool that can distinguish between OpenVPN, SSL (HTTPS), and SSH traffic is the Linux-
based sslh tool.

Routing features – redirect-private, allow-
pull-fqdn
Over the years, the routing features of OpenVPN have expanded. Most notably, there are
quite a few options for the redirect-gateway directive, as well as several other less well-
known routing directives:

redirect-private: This option behaves very similar to the redirect-
gateway directive, especially when the new parameters are used, but it does not
alter the default gateway.
allow-pull-fqdn: This allows the client to pull DNS names from the OpenVPN
server. Previously, only IP addresses could be pushed or pulled. This option
cannot be pushed and needs to be added to the client configuration itself.
route-nopull: All the options are pulled by a client from the server, except for
the routing options. This can be particularly handy when troubleshooting an
OpenVPN setup.
max-routes n: This defines the maximum number of routes that may be defined
or pulled from a remote server.

In this recipe, we will focus on the redirect-private directive and its parameters, as well
as the allow-pull-fqdn parameter.

Advanced Configuration

[356]

Getting ready
We will use the following network layout:

Set up the client and server certificates using the first recipe from Chapter 2, Client-server
IP-only Networks. For this recipe, the server computer was running CentOS 6 Linux and
OpenVPN 2.3.12. The client was running Windows 7 64 bit and OpenVPN 2.3.11. Keep the
configuration file, basic-udp-server.conf, from the Server-Side routing recipe from
Chapter 2, Client-server IP-only Networks, as well as the client configuration file, basic-
udp-client.ovpn, from the Using an ifconfig-pool block recipe from Chapter 2, Client-server
IP-only Networks.

How to do it…
Append the following lines to the basic-udp-server.conf file:1.

 push "redirect-private bypass-dhcp bypass-dns"
 push "route server.example.com"

Save it as example10-10-server.conf.2.
Start the server:3.

 [root@server]# openvpn --config example10-10-server.conf

Advanced Configuration

[357]

Append the following line to the client configuration file, basic-udp-4.
client.ovpn, and save it as example10-10.ovpn:

 allow-pull-fqdn

Start the client:5.

Watch the routing table after the connection has been established.6.

If the DHCP or DNS server was on a different subnet than the client itself,
then a new route will have been added. This is to ensure that DHCP requests
still go to the local DHCP server and are not sent over the VPN tunnel.

A route for the host server.example.com will have been added.

How it works…
The bypass-dhcp and bypass-dns options for the directives, redirect-gateway
and redirect-private, cause the OpenVPN client to add an extra route to the DHCP and
DNS servers if they are on a different network. In large-scale networks, the DNS server is
often not found on the local subnet that the client is connected to. If the route to this DNS
server is altered to go through the VPN tunnel after the client has connected, this will cause
at the very least a serious performance penalty. More likely, the entire DNS server will
become unreachable.

The allow-pull-fqdn directive enables the use of a DNS name instead of an IP address
when specifying a route. Especially, if a dedicated route to a host with a dynamic IP address
needs to be made, this is very useful.

Note that the allow-pull-fqdn directive cannot be pushed from the server.

Advanced Configuration

[358]

There's more…
Apart from the directives explained in this recipe, there are more routing directives
available to control if and how routes are added to the client.

The route-nopull directive
The route-nopull directive causes the client to pull all the information from the server but
not the routes. This can be very useful for debugging a faulty server setup. It does not mean
that no routes are added at all by the OpenVPN client. Only the routes that are specified
using push "route" will be ignored. Starting with OpenVPN 2.4, it is also possible to filter
out options that are pushed from the server to the client. The next recipe will go into detail
on this.

The max-routes directive
The max-routes directive is introduced in OpenVPN 2.1, as version 2.1 allows an
administrator to push many more routes when compared to OpenVPN 2.0. To prevent a
client from being overloaded with routes, the option max-routes n is added, where n is
the maximum number of routes that can be defined in the client configuration file and/or
can pulled from the server.

The default value for this parameter is 100.

See also
The next recipe in this chapter, where options that are pushed from the server to
the client are filtered before they are applied

Filtering out pushed options
Starting with OpenVPN 2.4, it is now possible to filter out options pushed from the
OpenVPN server to the client. This allows users to have more control over the network
routes and addresses that are pushed from the server.

This recipe will show how this new feature of OpenVPN works.

Advanced Configuration

[359]

Getting ready
We will use the following network layout:

Set up the client and server certificates using the first recipe from Chapter 2, Client-server
IP-only Networks. For this recipe, the server computer was running CentOS 6 Linux and
OpenVPN 2.3.12. The client was running Windows 7 64 bit and OpenVPN 2.4_alpha2. For
the server, keep the configuration file, example9-2-server.conf, from the Linux – using
pull-resolv-conf recipe, from Chapter 9, OS Integration at hand. For the client, keep the
configuration file, basic-udp-client.ovpn, from the Using an ifconfig-pool block recipe
from Chapter 2, Client-server IP-only Networks.

How to do it…
Start the server:1.

 [root@server]# openvpn --config example9-2-server.conf

Append the following line to the client configuration file, basic-udp-2.
client.ovpn, and save it as example10-11.ovpn:

 pull-filter ignore "dhcp-option DNS"

Advanced Configuration

[360]

Start the client:3.

View the client log file by selecting View Log in the OpenVPN GUI. The log file4.
will contain lines similar to the following:

 PUSH: Received control message: 'PUSH_REPLY,dhcp-option DNS
 192.168.3.1,route-gateway 10.200.0.1,topology subnet,ping
 10,ping-restart 60,ifconfig 10.200.0.2 255.255.255.0'
 Pushed option removed by filter: 'dhcp-option DNS 192.168.3.1'

Verify that the DNS settings on the client have not been altered using a tool such5.
as ipconfig /all.

How it works…
The pull-filter directive accepts several parameters:

accept t: Accepts the pushed option t from the server
ignore t: Ignores the pushed option t from the server, but doesn't abort the
connection
reject t: Rejects the pushed option t from the server and abort the VPN
connection

Each option can be specified multiple times, with the last occurrence overriding earlier
lines.

By adding the line pull-filter ignore "dhcp-option DNS" to the client configuration
file, we ignore any pushed line that starts with dhcp-option DNS. Therefore, no DNS
settings are accepted from the VPN server. This option can be applied to all options that are
pushed from the server.

Advanced Configuration

[361]

Handing out the public IPs
With the topology subnet feature that OpenVPN offers, it becomes feasible to hand out
public IP addresses to connecting clients. For this recipe, we will show how such a setup
can be realized. We will re-use a technique from the Proxy-ARP recipe from Chapter
2, Client-server IP-only Networks, to make the VPN clients appear as if they are a part of the
remote network. If a dedicated IP address block is available for the VPN clients, then this is
not required. The advantage of using the proxy-arp method is that it allows us to use only
part of an expensive public IP address block.

Getting ready
For this recipe, the server computer was running CentOS 6 Linux and OpenVPN 2.3.12. The
client computer was running Windows 7 64 bit and OpenVPN 2.3.11. Keep the client
configuration file, basic-udp-client.ovpn, from the Using an ifconfig-pool block recipe
from Chapter 2, Client-Server IP-Only Networks.

To test this recipe, a public IP address block of 16 addresses was used, but here, we will list
a private address block instead (10.0.0.0/255.255.255.240). This block is used as
follows:

10.0.0.18: This is used for the server's VPN IP address
10.0.0.19: Not available
10.0.0.20 –10.0.0.25: Available for VPN clients
10.0.0.26: Not available
10.0.0.27: The LAN address of the OpenVPN server itself
10.0.0.28 –10.0.0.29: Not available
10.0.0.30: The router on the remote LAN

How to do it…
Create the server configuration file:1.

 mode server
 tls-server
 proto udp
 port 1194
 dev tun

Advanced Configuration

[362]

 ifconfig 10.0.0.18 255.255.255.240
 ifconfig-pool 10.0.0.20 10.0.0.25
 push "route 10.0.0.27 255.255.255.255 net_gateway"
 push "route-gateway 10.0.0.30"
 push "redirect-gateway def1"

 tls-auth /etc/openvpn/cookbook/ta.key 0
 ca /etc/openvpn/cookbook/ca.crt
 cert /etc/openvpn/cookbook/server.crt
 key /etc/openvpn/cookbook/server.key
 dh /etc/openvpn/cookbook/dh2048.pem

 persist-key
 persist-tun
 keepalive 10 60

 topology subnet
 push "topology subnet"

 script-security 2
 client-connect /etc/openvpn/cookbook/proxyarp-connect.sh
 client-disconnect /etc/openvpn/cookbook/proxyarp-disconnect.sh

 #user nobody
 #group nobody

 daemon
 log-append /var/log/openvpn.log

Note that this server configuration cannot be run as user nobody. Save the
configuration file as example10-12-server.conf.

Next, create the proxyarp-connect.sh script:2.

 #!/bin/bash
 /sbin/arp -i eth0 -Ds $ifconfig_pool_remote_ip eth0 pub
 /sbin/ip route add ${ifconfig_pool_remote_ip}/32 dev tun0

Save it as /etc/openvpn/cookbook/proxyarp-connect.sh.3.
Similarly, create the proxyarp-disconnect.sh script:4.

 #!/bin/bash
 /sbin/arp -i eth0 -d $ifconfig_pool_remote_ip
 /sbin/ip route del ${ifconfig_pool_remote_ip}/32 dev tun0

Save it as /etc/openvpn/cookbook/proxyarp-disconnect.sh.5.

Advanced Configuration

[363]

Make sure that both the scripts are executable, then start the server:6.

 [root@server]# cd /etc/openvpn/cookbook
 [root@server]# chmod 755 proxy-connect.sh proxy-disconnect.sh
 [root@server]# openvpn --config example10-12-server.conf

Next, start the client. The IP address assigned to the client should be 10.0.0.20.7.
Use the client to browse the Internet and check its IP address by surfing, for8.
example, to http://www.whatismyip.com.

How it works…
Some notes on the server configuration file, the directives:

ifconfig 10.0.0.18 255.255.255.240
ifconfig-pool 10.0.0.20 10.0.0.25

Set up a pool of (public) IP address for the clients to use. Because not all of these addresses
are available in the /28 block, we cannot simply use:

server 10.0.0.18 255.255.255.240

The next statement is to ensure that the VPN server itself is reached via the regular network
and not via the VPN tunnel itself:

push "route 10.0.0.27 255.255.255.255 net_gateway"

In order to redirect all traffic via the VPN tunnel, we need to explicitly state the new default
gateway and redirect-gateway:

push "route-gateway 10.0.0.30"
push "redirect-gateway def1"

Normally, the following statement will also cause the topology setting to be pushed to the
VPN clients:

topology subnet

But, as we're not using the server directive, this does not happen automatically. By
explicitly pushing the topology, we ensure that the clients will also use the correct settings.

http://www.whatismyip.com

Advanced Configuration

[364]

The client-connect and client-disconnect scripts are very similar to the ones used
in the Proxy-ARP recipe from Chapter 2, Client-server IP-only Networks. By using a handy
feature of the Linux arp command, we can make the remote clients appear to be part of the
local network.

There's more…
The topology subnet feature was introduced in OpenVPN 2.1 and is essential to making
this recipe practical. Without this feature, each client would be handed out a miniature /30
network, which means that each client would use up to four public IP addresses. This made
the deployment of handing out public IP addresses to VPN clients very expensive.

See also
The Proxy-ARP recipe from Chapter 2, Client-server IP-only Networks, which
explains in more detail how the Linux/UNIX Proxy-ARP feature works

Index

-
--capath directive
 using 142

/
/etc/sysconfig/network-scripts
 tweaking 114

A
all clients functions expect OpenVPN endpoints

scenario
 troubleshooting 226, 228
Android clients
 options, pushing to 316
Android
 OpenVPN, using for Android clients 313
auth-user-pass-verify script
 using 171
Authenticated Encryption with Associated Data

(AEAD) ciphers 147

B
bridged OpenVPN server
 setting up 98
 setting up, on Windows 102, 103, 104, 105, 106
bridging issues
 troubleshooting 209, 211
build-dh script 45

C
CA certificate file 297
CCD file
 no route statements 64
Certificate Authority (CA) 128
certificate fingerprint 297

Certificate Revocation List (CRL)
 about 131
 uses 133, 134
certificates
 connection, setting up in client 46
 connection, setting up on server mode 46
 generating 127, 128
 revoking 131, 132
cipher mismatches 192
ciphers
 pushing 148
client-config-dir files
 using 58, 59, 60
client-config-dir issues
 troubleshooting 204
client-config-dir mistakes 206
client-connect script
 using 160
client-disconnect scripts 162
client-side routing
 setting up 61, 62, 64
client-side up/down script
 using 156, 157, 161, 162
client-to-client subnet routing 64
client-to-client traffic routing
 troubleshooting 239, 240
client-to-client traffic
 enabling 92, 93, 94
client
 disconnecting 80
command line
 versus configuration files 22, 23
command-line parameters
 ordering 24
Common Internet File System (CIFS) 339
complete site-to-site network
 setting up 25, 27

[366]

compression mismatches 196, 197
compression tests 265, 267
configuration files
 including, in config files 320, 322
 setting up, on Windows 76
 versus command line 22, 23
configuration options, in CCD file
 config 61
 disable 61
 ifconfig-push 61
 iroute 60
 push 60
 push-reset 60
configuration problems, CCD files
 troubleshooting 60
connection blocks 328
 directives 331
crypto features
 of OpenSSL 145
 of PolarSSL 145
crypto library
 determining 142, 144

D
default configuration file 60
default gateway redirecting failure 245, 248
default gateway
 redirecting 65
DHCP relay 114
DHCP server
 configuring 114
directives
 in connection blocks 331
Distinguished Name (DN) 46
Distributed Denial of Service (DDoS) 53
down-root plugin
 using 183, 184, 186

E
easy-rsa scripts
 about 45
 using, on Windows 45
elliptic curve (EC) support 150, 153
elliptic curve cryptography (ECC) 150
expired/revoked certificates

 checking 135, 136
explicit-exit-notify directive 80
external DHCP server 110, 113

F
flags, redirect gateway directive
 !ipv4 68
 block-local 67
 bypass-dhcp 68
 bypass-dns 68
 ipv6 68
 local 67
fragment directive 274

H
HTTP proxy host, for connecting OpenVPN server
 dodging firewalls 343
 http-proxy options 343
 OpenVPN GUI, using 344
 performance 343
HTTP proxy
 OpenVPN server, connecting via 340, 341, 342
 used, for connecting to OpenVPN server with

authentication 344, 345
http-proxy options 343

I
ifconfig-pool block
 using 71
ifconfig-pool-persist
 about 332, 334
 pitfalls 335, 336
ifconfig-push
 pitfalls 162
inline certificates 326
intermediary CAs
 setting up 137, 138
IP forwarding
 making permanent 92
IP-less setups 348, 349, 351
IP-less setups, considerations
 firewalling 352
 point-to-point style environment 352
 routing 352
 TUN-style networks 352

[367]

iperf
 used, for optimizing performance 253
IPv4 speed
 versus IPv6 speed 256, 258
IPv6 default gateway
 redirecting 69
IPv6 endpoints 57
IPv6 support
 adding 55, 56, 57
IPv6-only setup 58
IPv6-only tunnel 37
IPv6
 integrating, into TAP-style networks 122, 123
 using 33, 36

K
key mismatches 197, 198

L
LARTC (Linux Advanced Routing and Traffic

Control) 232
learn-address script
 update action 167
 using 163, 164, 166
linear addresses 54
Linux
 NetworkManager, using 283, 284, 285, 286
 pull-resolv-conf, using 288, 289, 290
log file errors 37
logging 177

M
management interface
 using 80, 83, 118, 119, 122
manual pages, OpenSSL
 reference 130
masquerading
 setting up 55
max-routes directive 358
Maximum Transfer Unit (MTU) 251
missing return route, solution
 masquerading 222
 routes, adding on LAN hosts 222
missing return routes
 on using iroute 222, 223, 225

 troubleshooting 219, 220, 221
MTU issues
 troubleshooting 199, 200, 201
MULTI
 bad source warnings 242, 243
multiple authentication mechanisms when

connecting to HTTP proxy
 authentication methods 348
 NTLM proxy authorization 347
 OpenVPN GUI limitations 348
multiple CAs 139
multiple remote issues
 troubleshooting 207
multiple secret keys 13, 15

N
network connectivity
 troubleshooting 202
network performance, on Gigabit Ethernet
 plain-text tunnel 265
 Windows performance 265
NetworkManager
 used, for setting up routes 287
 using 283, 284, 285, 286
nobody
 using 167
non-IP traffic
 checking 106, 107, 109, 110
 forwarding, over tunnel 11
ns-cert-type server 54
NTLM proxy authorization 348

O
openssl ca commands 45
OpenSSL cipher speed 259, 260
OpenSSL toolbox
 output, verifying 129
 pkcs12 129
 x509 129
OpenSSL, versus PolarSSL
 encryption/decryption speed 148
OpenSSL
 crypto features 145
OpenVPN log files
 reading 212, 213, 216

[368]

OpenVPN route directive, parameters
 net_gateway 68
 vpn_gateway 69
OpenVPN secret key file
 formatting 13
OpenVPN secret keys 11, 12
OpenVPN user name 305
OpenVPN
 automatic service startup 304
 features 155
 in Gigabit networks 262, 263
 shortest setup 8, 10
 symmetric keys, for point-to-point connection 12
options
 pushing, to Android clients 316

P
PAM authentication plugin
 using 187
performance
 analyzing, tcpdump used 278
 optimizing, iperf used 253
 optimizing, ping used 251
ping
 used, for optimizing performance 251
plaintext tunnel
 creating 16
point-to-point network
 about 7
 drawbacks 8
PolarSSL
 crypto features 145
port sharing
 with HTTPS server 353, 354
PPPoE (PPP over Ethernet) 251
private key
 generating 128
 setting up 40, 41, 42, 43
private network adapters
 versus public network adapters 306, 307
proxy-arp feature
 about 85
 using 83, 84
public IPs
 handing out 361

public key infrastructure (PKI) 7
public key
 setting up 40, 41, 42, 43
public network adapters
 versus private network adapters 306, 307
pull-filter directive, parameters
 accept t 360
 ignore t 360
 reject t 360
pull-resolv-config
 using 288, 289, 290
pushable ciphers 194
pushed options
 filtering out 358, 360

R
redirect-gateway parameters 67
redirect-private option 68
regular web server
 versus secure web server 355
remote-random directive 322, 324
route-nopull directive 358
routes
 setting up, NetworkManager used 287
routing directives
 allow-pull-fqdn 355
 max-routes n 355
 redirect-private 355
 route-nopull 355
routing features 355
routing protocols 33
routing, and permissions on Windows
 troubleshooting 232
routing
 about 18, 21
 issues 21
 setup, automating 22

S
scalability 32
script order 174
script security 177
secure web server
 versus regular web server 355
server certificates 54

server-side routing
 setting up 49, 52, 53, 61, 62, 64
SOCKS proxy
 using 336, 338
source routing 229, 231
split tunneling 68
status directive
 parameters 79
status file
 using 77, 79, 115, 116

T
TAP-based connection
 setting up 88, 90, 91
TAP-network style network 85
TAP-style networks
 IPv6, integrating into 122, 123
TAP
 versus TUN 91
TCP protocol
 using 10, 54
TCP, and UDP-based setups
 mixing 325
TCP-based connections
 advantages 325
 parameters 278
 tuning 274, 275, 277
tcpdump
 used, for analyzing performance 278
 using 17
three-way routing 28, 32
tls-verify script
 using 167, 168, 169, 170
traffic shaping
 using 269, 271
TUN mismatch
 versus TAP mismatch 194
tun-mtu issues

 troubleshooting 199, 200, 201
TUN-style networks 117
TUN
 versus TAP 91
tunnel
 non-IP traffic, forwarding over 11

U
UDP-based connections
 tuning 271, 272, 273
unable to change Windows network location

scenario
 troubleshooting 235, 237
User Access Control (UAC) 291

V
variables, in vars file 46
verbose logging 206
VPN connection setup considerations
 performance 339
 SOCKS proxies, via SSH 339
 SOCKS proxies, with plain-text authentication

340

W
Windows 8+
 DNS lookups security, ensuring 310, 312
Windows CryptoAPI store
 using 293, 294, 295
Windows
 bridged OpenVPN server, setting up on 102,

103, 104, 105, 106
 configuration files, setting up on 76
 DNS cache, updating 298, 299
 easy-rsa scripts, using on 45
 elevated privileges 291, 293
 OpenVPN, running as service 300, 301, 302,

303

 routing methods 308, 309

	Table of Contents
	Chapter 1: Point-to-Point Networks
	Introduction
	The shortest setup possible
	Getting ready
	How to do it…
	How it works…
	There's more…
	Using the TCP protocol
	Forwarding non-IP traffic over the tunnel

	OpenVPN secret keys
	Getting ready
	How to do it…
	How it works…
	There's more…
	See also

	Multiple secret keys
	Getting ready
	How to do it…
	How it works…
	There's more…
	See also

	Plaintext tunnel
	Getting ready
	How to do it…
	How it works…
	There's more…

	Routing
	Getting ready
	How to do it…
	How it works…
	There's more…
	Routing issues
	Automating the setup

	See also

	Configuration files versus the command line
	Getting ready
	How to do it…
	How it works…
	There's more…
	Exceptions to the rule

	Complete site-to-site setup
	Getting ready
	How to do it…
	How it works…
	There's more…
	See also

	Three-way routing
	Getting ready
	How to do it…
	How it works…
	There's more…
	Scalability
	Routing protocols

	See also

	Using IPv6
	Getting ready
	How to do it…
	How it works…
	There's more…
	Log file errors
	IPv6-only tunnel

	See also

	Chapter 2: Client-server IP-only Networks
	Introduction
	Setting up the public and private keys
	Getting ready
	How to do it…
	How it works…
	There's more…
	Using the easy-rsa scripts on Windows
	Some notes on the different variables

	See also

	A simple configuration
	Getting ready
	How to do it…
	How it works…
	There's more…

	Server-side routing
	Getting ready
	How to do it…
	How it works…
	There's more…
	Linear addresses
	Using the TCP protocol
	Server certificates and ns-cert-type server
	Masquerading

	Adding IPv6 support
	Getting ready
	How to do it…
	How it works…
	There's more…
	IPv6 endpoints
	IPv6-only setup

	Using client-config-dir files
	Getting ready
	How to do it…
	How it works…
	There's more…
	The default configuration file
	Troubleshooting
	Options allowed in a client-config-dir file

	Routing – subnets on both sides
	Getting ready
	How to do it…
	How it works…
	There's more…
	Masquerading
	Client-to-client subnet routing
	No route statements in a CCD file

	See also

	Redirecting the default gateway
	Getting ready
	How to do it…
	How it works…
	There's more…
	Redirect-gateway parameters
	The redirect-private option
	Split tunneling

	See also

	Redirecting the IPv6 default gateway
	Getting ready
	How to do it…
	How it works…
	There's more…

	Using an ifconfig-pool block
	Getting ready
	How to do it…
	How it works…
	There's more..
	Configuration files on Windows
	Client-to-client access
	Using the TCP protocol

	Using the status file
	Getting ready
	How to do it…
	How it works…
	There's more…
	Status parameters
	Disconnecting clients
	Explicit-exit-notify

	The management interface
	Getting ready
	How to do it…
	How it works…
	There's more…
	See Also

	Proxy ARP
	Getting ready
	How to do it…
	How it works…
	There's more…
	TAP-style networks

	User nobody
	Broadcast traffic might not always work

	See also

	Chapter 3: Client-server Ethernet-style Networks
	Introduction
	Simple configuration – non-bridged
	Getting ready
	How to do it…
	How it works…
	There's more…
	Differences between TUN and TAP
	Using the TCP protocol
	Making IP forwarding permanent

	See also

	Enabling client-to-client traffic
	Getting ready
	How to do it…
	How it works…
	There's more…
	Broadcast traffic may affect scalability
	Filtering traffic
	TUN-style networks

	Bridging – Linux
	Getting ready
	How to do it…
	How it works…
	There's more…
	Fixed addresses and the default gateway
	Name resolution

	See also

	Bridging- Windows
	Getting ready
	How to do it…
	How it works…
	See also

	Checking broadcast and non-IP traffic
	Getting ready
	How to do it…
	How it works…

	An external DHCP server
	Getting ready
	How to do it…
	How it works…
	There's more…
	DHCP server configuration
	DHCP relay
	Tweaking /etc/sysconfig/network-scripts

	Using the status file
	Getting ready
	How to do it…
	How it works…
	There's more…
	Difference with TUN-style networks
	Disconnecting clients

	See also

	The management interface
	Getting ready
	How to do it…
	How it works…
	There's more…
	See also

	Integrating IPv6 into TAP-style networks
	Getting ready
	How to do it…
	How it works…
	There's more…
	See also

	Chapter 4: PKI, Certificates, and OpenSSL
	Introduction
	Certificate generation
	Getting ready
	How to do it…
	How it works…
	There's more…
	See also

	OpenSSL tricks – x509, pkcs12, verify output
	Getting ready
	How to do it…
	How it works…

	Revoking certificates
	Getting ready
	How to do it…
	How it works…
	There's more…
	What is needed to revoke a certificate

	See also

	The use of CRLs
	Getting ready
	How to do it…
	How it works…
	There's more…
	See also

	Checking expired/revoked certificates
	Getting ready
	How to do it…
	How it works…
	There's more…

	Intermediary CAs
	Getting ready
	How to do it…
	How it works…
	There's more…

	Multiple CAs – stacking, using the capath directive
	Getting ready
	How to do it…
	How it works…
	There's more…
	Using the –capath directive

	Determining the crypto library to be used
	Getting ready
	How to do it…
	How it works…
	There's more…
	See also

	Crypto features of OpenSSL and PolarSSL
	Getting ready
	How to do it…
	How it works…
	There's more…
	AEAD Ciphers
	Encryption speed

	Pushing ciphers
	Getting ready
	How to do it…
	How it works…
	There's more…
	Future enhancements

	Elliptic curve support
	Getting ready
	How to do it…
	How it works…
	There's more…
	Elliptic curve support

	Chapter 5: Scripting and Plugins
	Introduction
	Using a client-side up/down script
	Getting ready
	How to do it…
	How it works…
	There's more…
	Environment variables
	Calling the down script before the connection terminates
	Advanced – verify the remote hostname

	Using a client-connect script
	Getting ready
	How to do it…
	How it works…
	There's more…
	Pitfall in using ifconfig-push
	The client-disconnect scripts
	Environment variables
	Absolute paths

	Using a learn-address script
	Getting ready
	How to do it…
	How it works…
	There's more…
	User nobody
	The update action

	Using a tls-verify script
	Getting ready
	How to do it…
	How it works…
	There's more…

	Using an auth-user-pass-verify script
	Getting ready
	How to do it…
	How it works…
	There's more…
	Specifying the username and password in a file on the client
	Passing the password via environment variables

	Script order
	Getting ready
	How to do it…
	How it works…
	There's more…

	Script security and logging
	Getting ready
	How to do it…
	How it works…
	There's more…

	Scripting and IPv6
	Getting ready
	How to do it…
	How it works…
	There's more…

	Using the down-root plugin
	Getting ready
	How to do it…
	How it works…
	There's more…
	See also

	Using the PAM authentication plugin
	Getting ready
	How to do it…
	How it works…
	There's more…
	See also

	Chapter 6: Troubleshooting OpenVPN - Configurations
	Introduction
	Cipher mismatches
	Getting ready
	How to do it…
	How it works…
	There's more…
	Pushable ciphers

	TUN versus TAP mismatches
	Getting ready
	How to do it…
	How it works…

	Compression mismatches
	Getting ready
	How to do it…
	How it works…

	Key mismatches
	Getting ready
	How to do it…
	How it works…
	See also

	Troubleshooting MTU and tun-mtu issues
	Getting ready
	How to do it…
	How it works…
	There's more…
	See also

	Troubleshooting network connectivity
	Getting ready
	How to do it…
	How it works…
	There's more…

	Troubleshooting client-config-dir issues
	Getting ready
	How to do it…
	How it works…
	There's more…
	More verbose logging
	Other frequent client-config-dir mistakes

	See also

	Troubleshooting multiple remote issues
	Getting ready
	How to do it…
	How it works…
	There's more…
	See also

	Troubleshooting bridging issues
	Getting ready
	How to do it…
	How it works…
	See also

	How to read the OpenVPN log files
	Getting ready
	How to do it…
	How it works…
	There's more…

	Chapter 7: Troubleshooting OpenVPN - Routing
	Introduction
	The missing return route
	Getting ready
	How to do it…
	How it works…
	There's more…
	Masquerading
	Adding routes on the LAN hosts

	See also

	Missing return routes when iroute is used
	Getting ready
	How to do it…
	How it works…
	There's more…
	See also

	All clients function except the OpenVPN endpoints
	Getting ready
	How to do it…
	How it works…
	There's more…
	See also

	Source routing
	Getting ready
	How to do it…
	How it works…
	There's more…

	Routing and permissions on Windows
	Getting ready
	How to do it…
	How it works…
	There's more…

	Unable to change Windows network location
	Getting ready
	How to do it…
	How it works…
	There's more…

	Troubleshooting client-to-client traffic routing
	Getting ready
	How to do it…
	How it works…
	There's more…
	See also

	Understanding the MULTI: bad source warnings
	Getting ready
	How to do it…
	How it works…
	There's more…
	Other occurrences of the MULTI: bad source message

	See also

	Failure when redirecting the default gateway
	Getting ready
	How to do it…
	How it works…
	There's more…
	See also

	Chapter 8: Performance Tuning
	Introduction
	Optimizing performance using ping
	Getting ready
	How to do it…
	How it works…
	There's more…
	See also

	Optimizing performance using iperf
	Getting ready
	How to do it…
	How it works…
	There's more…
	Client versus server iperf results
	Network latency
	Gigabit networks

	See also

	Comparing IPv4 and IPv6 speed
	Getting ready
	How to do it…
	How it works…
	There's more…
	Client versus server iperf results

	OpenSSL cipher speed
	Getting ready
	How to do it…
	How it works…
	There's more…
	See also

	OpenVPN in Gigabit networks
	Getting ready
	How to do it…
	How it works…
	There's more…
	Plain-text tunnel
	Windows performance

	Compression tests
	Getting ready
	How to do it…
	How it works…
	There's more…

	Traffic shaping
	Getting ready
	How to do it…
	How it works…

	Tuning UDP-based connections
	Getting ready
	How to do it…
	How it works…
	There's more…
	See also

	Tuning TCP-based connections
	Getting ready
	How to do it…
	How it works…
	There's more…

	Analyzing performance using tcpdump
	Getting ready
	How to do it…
	How it works…
	See also

	Chapter 9: OS Integration
	Introduction
	Linux – using NetworkManager
	Getting ready
	How to do it…
	How it works…
	There's more…
	Setting up routes using NetworkManager
	DNS settings
	Scripting

	Linux – using pull-resolv-conf
	Getting ready
	How to do it…
	How it works…
	There's more…

	Windows – elevated privileges
	Getting ready
	How to do it…
	How it works…

	Windows – using the CryptoAPI store
	Getting ready
	How to do it…
	How it works…
	There's more…
	The CA certificate file
	Certificate fingerprint

	Windows – updating the DNS cache
	Getting ready
	How to do it…
	How it works…
	See also

	Windows – running OpenVPN as a service
	Getting ready
	How to do it…
	How it works…
	There's more…
	Automatic service startup
	OpenVPN user name

	See also

	Windows – public versus private network adapters
	Getting ready
	How to do it…
	How it works…
	See also

	Windows – routing methods
	Getting ready
	How to do it…
	How it works…
	There's more…

	Windows 8+ – ensuring DNS lookups are secure
	Getting ready
	How to do it…
	How it works…
	There's more…

	Android – using the OpenVPN for Android clients
	Getting ready
	How to do it…
	How it works…
	There's more…
	See also

	Push-peer-info – pushing options to Android clients
	Getting ready
	How to do it…
	How it works…
	There's more…

	Chapter 10
: Advanced Configuration
	Introduction
	Including configuration files in config files
	Getting ready
	How to do it…
	How it works…

	Multiple remotes and remote-random
	Getting ready
	How to do it…
	How it works…
	There's more…
	Mixing TCP and UDP-based setups
	Advantage of using TCP-based connections
	Automatically reverting to the first OpenVPN server

	See also

	Inline certificates
	Getting ready
	How to do it…
	How it works…
	There's more…

	Connection blocks
	Getting ready
	How to do it…
	How it works…
	There's more…
	Allowed directives inside connection blocks
	Pitfalls when mixing TCP and UDP-based setups

	See also

	Details of ifconfig-pool-persist
	Getting ready
	How to do it…
	How it works…
	There's more…
	Specifying the update interval
	Caveat – the duplicate-cn option
	When topology net30 is used

	Connecting using a SOCKS proxy
	Getting ready
	How to do it…
	How it works…
	There's more…
	Performance
	SOCKS proxies via SSH
	SOCKS proxies using plain-text authentication

	See also

	Connecting via an HTTP proxy
	Getting ready
	How to do it…
	How it works…
	There's more…
	http-proxy options
	Dodging firewalls
	Performance
	Using the OpenVPN GUI

	See also

	Connecting via an HTTP proxy with authentication
	Getting ready
	How to do it…
	How it works…
	There's more…
	NTLM proxy authorization
	Authentication methods
	OpenVPN GUI limitations

	See also

	IP-less setups – ifconfig-noexec
	Getting ready
	How to do it…
	How it works…
	There's more…
	Point-to-point and TUN-style networks
	Routing and firewalling

	Port sharing with an HTTPS server
	Getting ready
	How to do it…
	How it works…
	There's more…
	Alternatives

	Routing features – redirect-private, allow-pull-fqdn
	Getting ready
	How to do it…
	How it works…
	There's more…
	The route-nopull directive
	The max-routes directive

	See also

	Filtering out pushed options
	Getting ready
	How to do it…
	How it works…

	Handing out the public IPs
	Getting ready
	How to do it…
	How it works…
	There's more…
	See also

	Index

